
Software Testing
Principles and Practices

Srinivasan Desikan
Director of Quality Assurance,

Agile Software Enterprise, Pvt. Ltd.
Bangalore, India

Gopalaswamy Ramesh
Consultant and Adjunct Professor,

International Institute of Information Technology,
Bangalore, India

PEARSON

Education



Editor in Chief: Prof H N Mahabala

Titles under the series include

• Software Maintainence
Gopalaswamy Ramesh and Ramesh Bhattiprolu

• Software Testing - Principles & Practices
Gopalaswamy Ramesh and Srinivasan Desikan

• Managing Global Software Projects
Gopalaswamy Ramesh

• Mobile Computing - Technology Applications & Service Creation
Asoke K Talukder and Roopa Yavagal

Copyright @ 2006 Dorling Kindersley (India) Pvt. Ltd.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold,
hired out, or otherwise circulated without the publisher's prior written consent in any form of binding or
cover other than that in which it is published and without a similar condition including this condition being
imposed on the subsequent purchaser and without limiting the rights under copyright reserved above, no
part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in
any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior
written permission of both the copyright owner and the above-mentioned publisher of this book.

ISBN 81-7758-295-X

First Impression, 2006
Second Impression, 2007

Published by Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South Asia.

Head Office: 482, F.I.E., Patparganj, Delhi 110092, India.
Registered Office: 14 Local Shopping Centre, Panchsheel Park, New Delhi 110017, India.

Laser typeset by Sigma Publishing Services, Chennai.

Printed in India by Baba Barkha Nath Printers.

,
j



Parents and Teachers who taught me the basics of
life and science

-Srinivasan Desikan

To the millions of differently-abled children who are
wrongly labeled as "disabled" because of the
inappropriate testing practices of our society

-Gopalaswamy Ramesh

I





The area of Software Testing has acquired wider horizon and significance. Customers demand
defect-free products; regulatory authorities go into the nitty-gritties of the tests to which a piece
of software is subjected, just as pharmaceutical companies are mandated to declare how they test
the medicines before release. Most of the books available in the market cover theoretical aspects
but very few address practical aspects. To prepare students for a career in testing and to be of
value to practitioners, one needs to provide a pragmatic and practical view of testing, together
with the right balance of people, process and technology. This forms the basis of the book Software
Testing-Principles and Practices.

As the title indicates, the emphasis is on principles and practices. The material in this book has
already been "Beta tested" by several universities in India such as Anna University in Chennai and
International Institute of Information Technology, Bangalore (iiit-b). iiit-b is also adopting the book
for its Center of Excellence in Software Engineering and for its M. Tech students. Some concepts in
the book have already been presented to practitioners through international conferences and guest
lectures by the authors of this book.

We have added chapters that focus on managing geographically distributed teams. This is
especially relevant for multinational companies, where distributed teams in different continents
work together in unison-developing, testing and delivering products to a global customer base.
We have included emerging trends in testing like extreme testing, ad hoc testing and so on.

The contents of this book can be used by practitioners to understand the state-of-practice in
the testing industry. The chapters on Metrics and Measurements, Test Planning, Test Management
and Automation have been added to help the practitioners adopt these concepts at work. We have
provided sufficient academic rigor to satisfy the contents of the syllabi of the various universities.

We would like to thank Ms. Gayathri Chandrasekar, Test manager at eFunds, Chennai for her
contributions to some of the chapters in the book.

Srinivasan Desikan

Gopalaswamy Ramesh



Acknowledgements

My gratitude are due to all the previous organizations (Wipro, Novell and Talisma) I worked with,
for the opportunities and infrastructure provided for me to learn the practical aspects of testing
on the job. My thanks are due to the testing professionals across the globe for interacting with
me and providing insights and information for developing this book. Last but not least, I would
like to thank my wife, son and daughter for their sacrifices and support. I can be contacted at
srinivasan.desikan@gmail.com.

Srinivasan Desikan

I want to thank Prof. Mahabala, my Guru, who has been a champion in software testing and has
motivated me towards it. He has been a constant source of inspiration for me over the last twenty
years. I also want to thank Department of Computer Science, Anna University and International
Institute of Information Technology,Bangalbre for enabling me to teach courses of Software Testing,
which has been a source of learning. My special thanks are also due to Prof. Sadagopan, for the iiit-
b Press initiative. Finally, I want to acknowledge the support of my family, without which I would
not have been able to give the kind of effort that went in to making this book. I can be contacted at
gopalaswamyJamesh@yahoo.com.

Gopalaswamy Ramesh

____ ---------"'I

mailto:vasan.desikan@gmail.com.
mailto:Jamesh@yahoo.com.


Software is becoming ubiquitous in today's world. Customers' expectations have increased
dramatically and the old fate of resignation that "it is OK for software to fail, we will have to live
with it" is simply no longer applicable. Software is expected to work, meeting customers' changing
demands, first time and every time, consistently and predictably. Earlier, the software systems
were used for back-office and non-critical operations of organizations. Now, more and more critical
applications are implemented globally. This increased expectation for error-free functioning of
software has increased the demand of quality output from software vendors. In tum, we have seen
over the last decade, the focus has shifted from mere programming and development to a more
holistic goal of producing software that works first time and all the time, thus increasing the focus
on testing.

Testing, in particular, has attracted significant interest over the past decade. Consider the
following which tell the whole story:

~ the number of testing jobs has increased several-fold providing bright career opportunities;
~ the compensation levels of testing functions are on the rise;
~ testing has become a major opportunity for outsourcing;
~ the number of conferences and similar events dedicated to testing has increased significantly

over the last five years; and
~ more and more professionals are considering software testing as a career.

The modus operandi of testing has also undergone a radical change, in keeping with the increased
demand. Firstly, globalization is here to stay. Organizations today exploit the geographic time
difference and global talent by distributing development and testing teams in different continents,
working seamlessly together. In order to be successful in this new world order, an organization must
master the art of working in geographically distributed teams. Secondly, testing has transformed
from an ad hoc and haphazard hit-and-run attempt to a systematic, planned activity, complete
with all processes and measured by scientific metrics. Thirdly, success in testing today requires
careful exploitation of various technologies to meet product's time to market requirements. Test
automation-automation of all parts of testing life cycle-has become a necessity and is no longer
a luxury. Finally, people's aspirations in testing careers have also undergone a sea change-a successful
organization should show career paths for the testing professionals and nurture their talent to ensure
their longevity within the organization and within the testing profession.

This book has come in a timely fashion to address the needs of the practitioners and aspiring
testing professionals and students. Both Ramesh and Srinivasan, have brought to life their forty



Foreword Wi::~I'~~I::;~I:_
~ 't:d_:!LibALwX@~~; -.' - - < ::;::-}'=

years of combined practical experience. This book covers some of the aspects which are essential
for the industry's success, but seldom touched upon by other books, such as:

ffi Balance between theory and practice: Most books, while trying to give theoretical rigor,
try to oversimplify the real-life problems. The authors have consistently started from what
exists in the real world and have provided the theoretical foundation to address the real life
situations.

ffi Balance between people, process, and technology issues: Successful organizations work
systematically, exploit technologies and leverage people. The authors have successfully
resisted the temptation of only discussing "cool technology issues" at the expense of
practicalities. As an example, you will find coverage of topics like automation (which is
technology-intensive), people and organizational structures (which is people-centric) and
test organization and reporting (which is process-focused).

ffi A solid exposure to foundations, from a practical viewpoint of the practitioners: The
authors have covered all the different types of testing extensively. As an example, topics
like Internationalization-which are considered esoteric-are discussed at length.

ffi This book is the first that I know which has recognized and articulated the importance of
globalization and explicitly discussed the various global team structures possible and the
issues thereof. This clearly demonstrates the authors experience of leading global software
testing teams.

ffi This book covers some of the recognized methodologies for testing which have been
accepted and presented in several international testing conferences throughout the world.

In addition to all of the above, the practical exercises given at the end of the chapters will expose
the reader to the realities of testing. The authors' experience of teaching full semester courses on
software testing is evident in various exercises. I am confident that with the advent of this book,
such courses will spread to various colleges and universities, thereby formalizing software testing
as a discipline and widening the net for developing more competent testing professionals.

I wish the book and the authors all success in their continuing endeavor to create an environment
where software testing is considered a critical phase of any software development life cycle, careers
in testing are valued significantly, and testing develops as an engineering discipline.

Vikram Shah

VikramShahis currentlyservingin theBoardofDirectorsin SilverSoftware,IT-Peopleand
is an activemember of BiTES(Boardfor IT educationStandardsby Karnatakagovernment).
Vikram mentors start-up InformationTechnologycompanies.Vikram Shah is an industry
veteranwith more than 30yearsof experienceand is currentlyservingasMDof Independent
Technologies(INTEC).In the past he served as MDof severalcompaniessuch as Mahindra
BritishTelecom,Novell,AndiamoSoftware,andTalismaSoftware.Vikramdid BSinElectronics
fromBITS,PilaniandMSin ComputerSciencefromUniversityofCalifornia,Berkeley.



"'$ !;ConteAt!js
\',,;.:::"r- ':," ,:'<;:""~:::)"::":!-' ..f. ",:,:,~",.:~:w.:

Preface
Acknowledgements
Foreword

v
vi

Vll

Part I

IIPrinciples of Testing

.-software Development Life Cycle Models

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1.10
1.11
1.12
1.13
1.14

2.1

2.2
2.3
2.4
2.5

Context of Testing in Producing Software
About this Chapter
The Incomplete Car
Dijkstra's Doctrine
A Test in Time!
The Cat and the Saint
Test the Tests First!
The Pesticide Paradox
The Convoy and the Rags
The Policemen on the Bridge
The Ends of the Pendulum
Men in Black
Automation Syndrome
Putting it All Together
References
Problems and Exercises

Phases of Software Project
2.1.1 Requirements Gathering and Analysis
2.1.2 Planning
2.1.3 Design
2.1.4 Development or Coding
2.1.5 Testing
2.1.6 Deployment and Maintenance
Quality, Quality Assurance, and Quality Control
Testing, Verification, and Validation
Process Model to Represent Different Phases
Life Cycle Models
2.5.1 Waterfall Model
2.5.2 Prototyping and Rapid Application Development Models

3
4
6
7
8
9

11
12
12
14
15
16
19
20
22
23
23

25
26
26
26
26
27
27
27
27
29
31
32
32
34

"------- - --- ----------



x Software Testing

2.5.3 Spiral or Iterative Model
2.5.4 The V Model
2.5.5 Modified V Model
2.5.6 Comparison of Various Life Cycle Models
References
Problems and Exercises

36
37
40
43
43
43

Part II

IIWhite Box Testing
3.1 What is White Box Testing?
3.2 Static Testing

3.2.1 Static Testing by Humans
3.2.2 Static Analysis Tools

3.3 Structural Testing
3.3.1 Unit/Code Functional Testing
3.3.2 Code Coverage Testing
3.3.3 Code Complexity Testing

3.4 Challenges in White Box Testing
References
Problems and Exercises

IIBlack Box Testing

47
48
48
49
53
56
56
57
63
67
68
68

73
4.1
4.2
4.3
4.4

4.5

What is Black Box Testing?
Why Black Box Testing?
When to do Black Box Testing?
How to do Black Box Testing?
4.4.1 Requirements Based Testing
4.4.2 Positive and Negative Testing
4.4.3 Boundary Value Analysis
4.4.4 Decision Tables
4.4.5 Equivalence Partitioning
4.4.6 State Based or Graph Based Testing
4.4.7 Compatibility Testing
4.4.8 User Documentation Testing
4.4.9 Domain Testing
Conclusion
References
Problems and Exercises

74
75
76
76
76
82
84
87
90
93
96
99
101
104
104
105



III Integration Testing

5.1 What is Integration Testing?
5.2 Integration Testing as a Type of Testing

5.2.1 Top-Down Integration
5.2.2 Bottom-Up Integration
5.2.3 Bi-Directional Integration
5.2.4 System Integration
5.2.5 Choosing Integration Method

5.3 Integration Testing as a Phase of Testing
5.4 Scenario Testing

5.4.1 System Scenarios
5.4.2 Use Case Scenarios

5.5 Defect Bash
5.5.1 Choosing the Frequency and Duration of Defect Bash
5.5.2 Selecting the Right Product Build
5.5.3 Communicating the Objective of Defect Bash
5.5.4 Setting up and Monitoring the Lab
5.5.5 Taking Actions and Fixing Issues
5.5.6 Optimizing the Effort Involved in Defect Bash

5.6 Conclusion
References
Problems and Exercises

107
108
108
111
113
114
115
116
117
118
118
120
122
123
123
123
123
124
124
125
126
126

II' System and Acceptance Testing
6.1
6.2
6.3
6.4

6.5

System Testing Overview
Why is System Testing Done?
Functional Versus Non-Functional Testing
Functional System Testing
6.4.1 Design/Architecture Verification
6.4.2 Business Vertical Testing
6.4.3 Deployment Testing
6.4.4 Beta Testing
6.4.5 Certification, Standards and Testing for Compliance
Non-Functional Testing
6.5.1 Setting up the Configuration
6.5.2 Coming up with Entry/Exit Criteria
6.5.3 Balancing Key Resources
6.5.4 Scalability Testing
6.5.5 Reliability Testing
6.5.6 Stress Testing
6.5.7 Interoperability Testing

127
128
130
131
133
134
135
136
137
140
141
142
143
143
145
149
153
156



6.6

6.7

Acceptance Testing
6.6.1 Acceptance Criteria
6.6.2 Selecting Test Cases for Acceptance Testing
6.6.3 Executing Acceptance Tests
Summary of Testing Phases
6.7.1 Multiphase Testing Model
6.7.2 Working Across Multiple Releases
6.7.3 Who Does What and When
References
Problems and Exercises

158
159
160
161
162
162
164
165
166
166

• Performance Testing 169
7.1
7.2
7.3

7.4
7.5
7.6

Introduction
Factors Governing Performance Testing
Methodology for Performance Testing
7.3.1 Collecting Requirements
7.3.2 Writing Test Cases
7.3.3 Automating Performance Test Cases
7.3.4 Executing Performance Test Cases
7.3.5 Analyzing the Performance Test Results
7.3.6 Performance Tuning
7.3.7 Performance Benchmarking
7.3.8 Capacity Planning
Tools for Perform'ance Testing
Process for Performance Testing
Challenges
References
Problems and Exercises

170
170
173
174
176
177
177
179
182
184
186
187
188
190
191
192

• Regression Testing

8.1 What is Regression Testing?
8.2 Types of Regression Testing
8.3 When to do Regression Testing?
8.4 How to do Regression Testing?

8.4.1 Performing an Initial "Smoke" or "Sanity" Test
8.4.2 Understanding the Criteria for Selecting the Test Cases
8.4.3 Classifying Test Cases
8.4.4 Methodology for Selecting Test Cases
8.4.5 Resetting t1).eTest Cases for Regression Testing
8.4.6 Concluding the Results of Regression Testing

193
194
195
196
197
198
199
200
201
202
205



III'Internationalization (IlSn)Testing

8.5

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

Best Practices in Regression Testing
References
Problems and Exercises

Introduction
Primer on Internationalization
9.2.1 Definition of Language
9.2.2 Character Set
9.2.3 Locale
9.2.4 Terms Used in This Chapter
Test Phases for Internationalization Testing
Enabling Testing
Locale Testing
Internationalization Validation
Fake Language Testing
Language Testing
Localization Testing
Tools Used for Internationalization
Challenges and Issues
References
Problems and Exercises

206
208
208

211
212
212
212
213
214
214
215
216
218
219
221
222
223
225
225
226
227

IIAd hoc Testing
10.1 Overview of Ad Hoc Testing
10.2 Buddy Testing
10.3 Pair Testing

10.3.1 Situations When Pair Testing Becomes Ineffective
10.4 Exploratory Testing

10.4.1 Exploratory Testing Techniques
10.5 Iterative Testing
10.6 Agile and Extreme Testing

10.6.1 XP Work Flow
10.6.2 Summary with an Example

10.7 Defect Seeding
10.8 Conclusion

References
Problems and Exercises

228
229
233
234
236
237
237
239
241
242
245
246
248
248
248



300
300
302

275
276
278
281
283
284
285
285
288
291
292
293
295
295
295

299

274

253
254
254
261
261
267
268
269
269
272
273
273

Usability and Accessibility Testing

12.1 What is Usability Testing?
12.2 Approach to Usability
12.3 When to do Usability Testing?
12.4 How to Achieve Usability?
12.5 Quality Factors for Usability
12.6 Aesthetics Testing
12.7 Accessibility Testing

12.7.1 BasicAccessibility
12.7.2 Product Accessibility
Tools for Usability
Usability Lab Setup
Test Roles for Usability
Summary
References
Problems and Exercises

Testing of Object-Oriented Systems
11.1 Introduction
11.2 Primer on Object-Oriented Software
11.3 Differences in 00 Testing

11.3.1 Unit Testing a set of Classes
11.3.2 Putting Classes to Work Together-Integration Testing
11.3.3 System Testing and Interoperability of 00 Systems
11.3.4 Regression Testing of 00 Systems
11.3.5 Tools for Testing of 00 Systems
11.3.6 Summary
References
Problems and Exercises

12.8
12.9
12.10
12.11

Part IV

xiv Software Testing

IIICommon People Issues
13.1 Perceptions and Misconceptions About Testing

13.1.1 "Testing is not Technically Challenging"
13.1.2 "Testing Does Not Provide me a Career Path or Growth"

Part III



13.2
13.3
13.4

13.1.3 "I Am Put in Testing- What is WrongWith Me?!"
13.1.4 "These Folks Are My Adversaries"
13.1.5 "Testing is What I Can Do in the End if I Get Time"
13.1.6 "There is no Sense of Ownership in Testing"
13.1.7 "Testing is only Destructive"
Comparison between Testing and Development Functions
Providing Career Paths for Testing Professionals
The Role of the Ecosystem and a Call for Action
13.4.1 Role of Education System
13.4.2 Role of Senior Management
13.4.3 Role of the Community
References
Problems and Exercises

303
304
304
306
306
306
307
314
314
315
316
318
318

IIIOrganization Structuresfor Testing Teams 320
14.1 Dimensions of Organization Structures 321
14.2 Structures in Single-Product Companies 321

14.2.1 Testing Team Structures for Single-Product Companies 322
14.2.2 Component-Wise Testing Teams 325

14.3 Structures for Multi-Product Companies 325
14.3.1 Testing Teams as Part of "CTO'sOffice" 327
14.3.2 Single Test Team for All Products 328
14.3.3 Testing TeamsOrganized by Product 329
14.3.4 Separate Testing Teams for Different Phases of Testing 329
14.3.5 Hybrid Models 331

14.4 Effectsof Globalization and Geographically Distributed Teams
on Product Testing 331
14.4.1 Business Impact of Globalization 331
14.4.2 Round the ClockDevelopment/Testing Model 332
14.4.3 Testing Competency Center Model 334
14.4.4 Challenges in Global Teams 336

14.5 Testing ServicesOrganizations 338
14.5.1 Business Need for Testing Services 338
14.5.2 Differences between Testing as a Service and Product-

Testing Organizations 338
14.5.3 Typical Roles and Responsibilities of Testing Services Organization 339
14.5.4 Challenges and Issues in Testing Services Organizations 342

14.6 Success Factors for Testing Organizations 344
References 346
Problems and Exercises 346



Part V

Test Planning, Management, Execution, and Reporting 351
15.1 Introduction 352
15.2 Test Planning 352

15.2.1 Preparing a Test Plan 352
15.2.2 ScopeManagement: Deciding Features to be Tested/Not Tested 352
15.2.3 Deciding TestApproach/Strategy 354
15.2.4 Setting up Criteria for Testing 355
15.2.5 Identifying Responsibilities, Staffing,and Training Needs 355
15.2.6 Identifying Resource Requirements 356
15.2.7 Identifying TestDeliverables 357
15.2.8 TestingTasks:Size and Effort Estimation 357
15.2.9 Activity Breakdown and Scheduling 360
15.2.10Communications Management 361
15.2.11RiskManagement 362

15.3 TestManagement 366
15.3.1 Choice of Standards 366
15.3.2 Test Infrastructure Management 369
15.3.3 Test People Management 372
15.3.4 Integrating with Product Release 373

15.4 Test Process 374
15.4.1 Putting Together and Baselining a Test Plan 374
15.4.2 TestCase Specification 374
15.4.3 Update of TraceabilityMatrix 375
15.4.4 Identifying Possible Candidates for Automation 375
15.4.5 Developing and Baselining TestCases 376
15.4.6 Executing Test Cases and Keeping TraceabilityMatrix Current 376
15.4.7 Collecting and Analyzing Metrics 377
15.4.8 Preparing Test Summary Report 377
15.4.9 Recommending Product Release Criteria 377

15.5 TestReporting 378
15.5.1 Recommending Product Release 379

15.6 Best Practices 379
15.6.1 Process Related Best Practices 380
15.6.2 People Related Best Practices 380
15.6.3 TechnologyRelated Best Practices 380
Appendix A: Test Planning Checklist 381
Appendix B:Test Plan Template 384
References 385
Problems and Exercises 385



xVii

IIISoftware Test Automation 387
16.1 What is TestAutomation? 388
16.2 Terms Used in Automation 390
16.3 Skills Needed for Automation 392
16.4 What to Automate, Scope ofAutomation 394

16.4.1 Identifying the Types of TestingAmenable to Automation 394
16.4.2 Automating Areas Less Prone to Change 395
16.4.3 Automate Tests that Pertain to Standards 395
16.4.4 Management Aspects in Automation 396

16.5 Design and Architecture for Automation 396
16.5.1 External Modules 397
16.5.2 Scenario and Configuration FileModules 398
16.5.3 TestCases and Test Framework Modules 398
16.5.4 Tools and Results Modules 399
16.5.5 Report Generator and Reports/Metrics Modules 399

16.6 Generic Requirements for TestTool/Framework 399
16.7 Process Model for Automation 408
16.8 Selecting a TestTool 411

16.8.1 Criteria for SelectingTestTools 412
16.8.2 Steps for ToolSelection and Deployment 415

16.9 Automation for Extreme Programming Model 415
16.10 Challenges in Automation 416
16.11 Summary 416

References 418
Problems and Exercises 419

II'Test Metrics and Measurements 420

17.1
17.2
17.3
17.4

17.5

17.6

What are Metrics and Measurements?
Why Metrics in Testing?
Types of Metrics
Project Metrics
17.4.1 EffortVariance (Planned vs Actual)
17.4.2 Schedule Variance (Planned vs Actual)
17.4.3 EffortDistribution Across Phases
Progress Metrics
17.5.1 TestDefectMetrics
17.5.2 Development DefectMetrics
Productivity Metrics
17.6.1 Defects per 100Hours of Testing
17.6.2 TestCases Executed per 100Hours of Testing

421
425
427
428
429
430
432
433
434
443
448
450
450



17.7
17.8

17.6.3 Test Cases Developed per 100 Hours of Testing
17.6.4 Defects per 100 Test Cases
17.6.5 Defects per 100 Failed Test Cases
17.6.6 Test Phase Effectiveness
17.6.7 Closed Defect Distribution
Release metrics
Summary
References
Problems and Exercises

450
450
451
452
452
453
455
456
456

IIIllustrations

IIReferences and Bibliography

IIIndex

457

481

483



aQIOulllas



I
This part of the book sets the context for the entire book.
We start Chapter I, Principles of Testing, by discussing the
changes in the software scenario over the last few years and
the demands that these changes make on software quality.We
translate these demands into eleven basic principles which
provide anchors to rest of the chapters. In Chapter 2, Software
Development Life Cycles, we define key terms like verification,
validation, quality assurance, and quality control, go into the
details of the various life cycle models and the implication
of these models on verification and validation activities. We
also introduce the concepts of entry and exit criteria that will
be necessary to understand the different phases of testing
later in the book.



In this chapter-

./ Context of testing in producing software

./ About this chapter

./ The incomplete car

./ Dijkstra's doctrine

./ A test in time!

./ The cat and the saint

./ Test the tests first!

./ The pesticide paradox

./ The convoy and the rags

./ The policemen on the bridge

./ The ends of the pendulum

./ Men in black

./ Automation syndrome

./ Putting it all together



4 Software Testing

1.1 CONTEXT OF TESTING IN PRODUCING SOFTWARE

Almost everything we use today has an element of software in it. In the
early days of evolution of software, the users of software formed a small
number compared to the total strength of an organization. Today, in a
typical workplace (and at home), just about everyone uses a computer and
software. Administrative staff use office productivity software (replacing
the typewriters of yesteryears). Accountants and finance people use
spreadsheets and other financial packages to help them do much faster
what they used to do with calculators (or even manually). Everyone in an
organization and at home uses e-mail and the Internet for entertainment,
education, communication, interaction, and for getting any information
they want. In addition, of course, the "technical" people use programming
languages, modeling tools, simulation tools, and database management
systems for tasks that they were mostly executing manually a few
years earlier.
The above examples are just some instances where the use of software is

"obvious" to the users. However, software ismore ubiquitous and pervasive
than seen in these examples. Software today is as common as electricity was
in the early part of the last century.Almost every gadget and device we have
at home and at work is embedded with a significant amount of software.
Mobile phones, televisions, wrist watches, and refrigerators or any kitchen
equipment all have embedded software.
Another interesting dimension is that software is being used now in

mission critical situations where failure is simply unacceptable. There is no
way one can suggest a solution of "please shutdown and reboot the system"
for a software that is in someone's pacemaker! Almost every service we
have taken for granted has software. Hanks, air traffic controls, cars are all
powered by software that simply cannot afford to fail. These systems have
to run reliably, predictably, all the time, every time.

This pervasiveness, ubiquity, and mission criticality places certain
demands on the way the software is developed and deployed.

First, an organization that develops any form of software product
or service must put in every effort to drastically reduce and, preferably,
eliminate any defects in each delivered product or service. Users are
increasingly intolerant of the hit-and-miss approach that characterized
software products. From the point of view of a software development
organization also, it may not be economically viable to deliver products
with defects. For instance, imagine finding a defect in the software
embedded in a television after it is shipped to thousands of customers.
How is it possible to send "patches" to these customers and ask them to
"install the patch?" Thus, the only solution is to do it right the first time,
before sending a product to the customer.

Second, defects are unlikely to remain latent for long. When the number
of users was limited and the way they used the product was also predictable



Principles of Testing 5

(and highly restricted), it was quite possible that there could be defects in
the software product that would never get detected or uncovered for a very
long time. However, with the number of users increasing, the chances of a
defect going undetected are becoming increasingly slim. If a defect is present
in the product, someone will hit upon it sooner than later.

Third, the nature ofusage ofa product or a service isbecoming increasingly
unpredictable. When bespoke software is developed for a specific function
for a specific organization (for example, a payroll package), the nature of
usage of the product can be predictable. For example, users can only exercise
the specific functionality provided in the bespoke software. In addition, the
developers of the software know the users, their business functions, and the
user operations. On the other hand, consider a generic application hosted
on the Internet. The developers of the application have no cOI],trolover how
someone will use the application. They may exercise untested functionality;
they may have improper hardware or software environments; or they may
not be fully trained on the application and thus simply use the product in an
incorrect or unintended manner. Despite all this "mishandling," the product
should work correctly.

Finally, the consequence and impact of every single defect needs analysis,
especially for mission critical applications. It may be acceptable to say that
99.9%of defects are fixed in a product for a release, and only 0.1% defects
are outstanding. It appears to be an excellent statistics to go ahead and
release the product. However, if we map the 0.1% failure in mission critical
applications, the data will look like this.

~ A total of 10,000incorrect surgery operations per week.
~ Three airplane crashes every day.
~ No electricity for five hours every week.

For sure, the above data is unacceptable for any individual, organization,
or government. Providing a work around, such as "In case of fire, wear this
dress," or documenting a failure, such as "You may lose only body parts
in case of a wrong airplane landing" would not be acceptable in cases of
mission critical applications.

This book focuses on software testing. Traditionally, testing is defined
as being narrowly confined to testing the program code. We would like
to consider testing in a broader context as encompassing all activities that
address the implications of producing quality products discussed above.
Producing a software product entails several phases (such as requirements
gathering, design, and coding) in addition to testing (in the traditional sense
of the term). While testing is definitely one of the factors (and one of the
phases) that contributes to a high quality product, it alone cannot add quality
to a product. Proper interaction of testing with other phases is essential for
a good product. These interactions and their impact are captured in the grid
in Figure 1.1.



Figure 1.1
Relationship of
effectiveness of
testing to quality
of other phases.

Poor upstream activities Right balance,
Implies heavy Promotes teamwork,
dependence on testing Delivers a quality
to detect and correct product to customers
defects

HIGH REWORK COST IDEAL STATE

Poor upstream activities AND May lead to unexpected
poor testing defects due to poor testing

NOT SUSTAINABLE RISKY

Quality of Other Phases

If the quality of the other phases is low and the effectiveness of testing is
low (lower left-hand corner of the grid), the situation is not sustainable. The
product will most likely go out of business very soon. Trying to compensate
for poor quality in other phases with increased emphasis on the testing
phase (upper left-hand corner of the grid) is likely to put high pressure on
everyone as the defects get detected closer to the time the product is about
to be released. Similarly,blindly believing other phases to be of high quality
and having a poor testing phase (lower right-hand side of the grid) will
lead to the risky situation of unforeseen defects being detected at the last
minute. The ideal state of course is when high quality is present in all the
phases including testing (upper right-hand corner of the grid). In this state,
the customers feel the benefits of quality and this promotes better teamwork
and success in an organization. .

1.2 ABOUTTHIS CHAPTER

In this chapter, we discuss some of the basic principles of testing. We
believe that these principles are fundamental to the objective of testing,
namely, to provide quality products to customers. These principles also
form the motivation for the rest of the book. Thus this chapter acts as an
anchor for the rest of the book.

The fundamental principles of testing are as follows.

1. The goal of testing is to find defects before customers find them out.
2. Exhaustive testing is not possible; program testing can only show

the presence of defects, never their absence.
3. Testing applies all through the software life cycle and is not an end-

of-cycle activity.
4. Understand the reason behind the test.



Principles of Testing

5. Test the tests first.
6. Tests develop immunity and have to be revised constantly.
7. Defects occur in convoys or clusters, and testing should focus on

these convoys.
8. Testing encompasses defect prevention.
9. Testing is a fine balance of defect prevention and defect detection.
10. Intelligent and well-planned automation is key to realizing the

benefits of testing.
11. Testingrequires talented, committed people who believe in themselves

and work in teams.

Wewill take up each of these principles in the subsequent sections.Where
appropriate, we will illustrate the principle with a simple story from outside
the arena of information technology to drive home the point.

1.3 THE INCOMPLETE CAR

Eventually, whatever a software organization develops should meet the
needs of the customer. Everything else is secondary. Testing is a means of
making sure that the product meets the needs of the customer.

We would like to assign a broader meaning to the term "customer." It
does not mean just external customers. There are also internal customers.
For example, if a product is built using different components from different
groups within an organization, the users of these different components
should be considered customers, even if they are from the same organization.
Having this customer perspective enhances the quality of all the activities
including testing.

We can take the internal customer concept a step further where the
development team considers the testing team as its internal customer. This
way we can ensure that the product is built not only for usage requirements



8 Software Testing

but also for testing requirements. This concept improves "testability" of
the product and improves interactions between the development and
testing teams.

We would like to urge the reader to retain these two perspectives-
customer perspective and perspective of quality not being an add-on
in the end, but built in every activity and component right from the
beginning-throughout the book.

If our job is to give a complete car to the customer (and not ask the
customers to paint the car) and if our intent is to make sure the car works
as expected, without any (major) problems, then we should ensure
that we catch and correct all the defects in the car ourselves. This is the
fundamental objectiveof testing. Anything we do in testing, it behoves us to
remember that.

1.4 DIJKSTRA'S DOCTRINE

Consider a program that is supposed to accept a six-character code and
ensure that the first character is numeric and rests of the characters are
alphanumeric. How many combinations of input data should we test, if
our goal is to test the program exhaustively?

The first character can be filled up in one of 10 ways (the digits 0-9).
The second through sixth characters can each be filled up in 62ways (digits
0-9, lower case letters a-z and capital letters A-Z). This means that we have
a total of 10 x (625) or 9,161,328,320valid combinations of values to test.
Assuming that each combination takes 10 seconds to test, testing all these
valid combinations will take approximately 2,905years!

Therefore, after 2,905years, we may conclude that all valid inputs are
accepted. But that is not the end of the story-what will happen to the
program when we give invalid data? Continuing the above example, if we
assume there are 10 punctuation characters, then we will have to spend



a total of 44,176 years to test all the valid and invalid combinations of
input data.

All this just to accept one field and test it exhaustively., Obviously,
exhaustive testing of a real life program is never possible.

All the above mean that we can choose to execute only a subset of the
tests. To be effective, we should choose a subset of tests that can uncover
the maximum number of errors. We will discuss in Chapter 4, on Black
Box Testing, and Chapter 3, on White Box Testing, some techniques such
as equivalence partitioning, boundary value analysis, code path analysis,
and so on which help in identifying subsets of test cases that have a higher
likelihood of uncovering defects.

Nevertheless, regardless of which subset of test cases we choose, we can
never be 100%sure that there are no defects left out. But then, to extend an
old cliche,nothing can be certain other than death and taxes, yet we live and
do other things by judiciously managing the uncertainties.

1.5 A TEST IN TIME!

Defects in a product can come from any phase. There could have been
errors while gathering initial requirements. If a wrong or incomplete
requirement forms the basis for the design and development of a product,
then that functionality can never be realized correctly in the eventual
product. Similarly, when a product design-which forms the basis for
the product development (a La coding)-is faulty, then the code that
realizes the faulty design will also not meet the requirements. Thus, an
essential condition should be that every phase of software development
(requirements, design, coding, and so on) should catch and correct defects
at that phase, without letting the defects seep to the next stage.

Let us look at the cost implications of letting defects seep through. If,
during requirements capture, some requirements are erroneously captured
and the error is not detected until the product is delivered to the customer,
the organization incurs extra expenses for

ffi performing a wrong design based on the wrong requirements;
ffi transforming the wrong design into wrong code during the coding

phase;
ffi testing to make sure the product complies with the (wrong)

requirement; and
ffi releasing the product with the wrong functionality .

.In Figure 1.2the defects in requirements are shown in gray.The coloured
figure is available on page 457.As you can see, these gray boxes are carried
forward through three of the subsequent stages-design, codin~ and testing.

I



10 Software. Testing

Figure 1.2
How defects from early
phases add to the
costs.

Requirement
Phase

Design
Phase

Coding
Phase

Testing
Phase

When this erroneous product reaches the customer after the testing
phase, the customer may incur a potential downtime that can result in loss
of productivity or business. This in tum would reflect as a loss of goodwill
to the software product organization. On top of this loss of goodwill, the
software product organization would have to redo all the steps listed above,
in order to rectify the problem.

Similarly, when a defect is encountered during the design phase (though
the requirements were captured correctly, depicted by yellow), the costs of
all of the subsequent phases (coding, testing, and so on) have to be incurred
multiple times. However, presumably, the costs would be lower than in the
first case, where even the requirements were not captured properly. This is
because the design errors (represented by yellow boxes) are carried forward
only to the coding and testing phases. Similarly, a defect in the coding phase
is carried forward to the testing phase (green boxes). Again, as fewer phases
are affected by this defect (compared to requirements defects or design
defects), we can expect that the cost of defects in coding should be less than
the earlier defects. As can be inferred from the above discussion, the cost of
a defect is compounded depending on the delay in detecting the defect.

Hence, smaller the lag time between defect injection (i.e.,when the defect
was introduced) and defect detection (i.e.,when the defect was encountered
and corrected), lesser are the unnecessary costs. Thus, it becomes essential

Figure 1.3
Compounding effect
of defects on software
costs.

10x

Reqmts Design Coding Testing Post release



Principles afTeSting

to catch the defects as early as possible. Industry data has reaffirmed these
findings. While there is no consensus about the costs incurred due to delay
in defect detection, a defect introduced during the requirement phase that
makes it to the final release may cost as much as a thousand times the cost of
detecting and correcting the defect during requirements gathering itself.

1.6 THE CATAND THE SAINT

Testing requires asking about and understanding what you are trying to
test, knowing what the correct outcome is, and why you are performing any
test. If we carry out tests without understanding why we are running them,
we will end up in running inappropriate tests that do not address what the
product should do. In fact, it may even turn out that the product is modified
to make sure the tests are run successfully, even if the product does not meet
the intended customer needs!

Understanding the rationale of why we are testing certain functionality
leads to different types of tests, which we will cover in Part II of the book. We
do white box testing to check the various paths in the code and make sure
they are exercised correctly. Knowing which code paths should be exercised
for a given test enables making necessary changes to ensure that appropriate
paths are covered. Knowing the external functionality of what the product
should do, we design black box tests. Integration tests are used to make sure
that the different components fit together. Internationalization testing is used
to ensure that the product works with multiple languages found in different
parts of the world. Regression testing is done to ensure that changes work
as designed and do not have any unintended side-effects.



12 $oftware Testing

1.7 TESTTHE TESTSFIRST!

From the above example, it is clear that it is the audiologist who has a
hearing problem, not the patient! Imagine if the doctor prescribed a treatment
for the patient assuming that the latter could not hear at 20 feet and 30 feet.

Tests are also artifacts produced by human beings, much as programs
and documents are. We cannot assume that the tests will be perfect either!
It is important to make sure that the tests themselves are not faulty before
we start using them. One way of making sure that the tests are tested is to
document the inputs and expected outputs for a given test and have this
description validated by an expert or get it counter-checked by some means
outside the tests themselves. For example, by giving a known input value
and separately tracing out the path to be followed by the program or the
process, one can manually ascertain the output that should be obtained.
By comparing this "known correct result" with the result produced by the
product, the confidence level of the test and the product canbe increased. The
practices of reviews and inspection and meticulous test planning discussed
in Chapter 3 and Chapter 15provide means to test the test.

1.8 THE PESTICIDE PARADOX

Defects are like pests; testing is like designing the right pesticides to catch
and kill the pests; and the test cases that are written are like pesticides. Just
like pests, defects develop immunity against test cases! As and when we
write new test cases and uncover new defects in the product, other defects
that were "hiding" underneath show up.



Principle~ of Testing 13

There are two possible ways to explain how products develop this
"immunity" against test cases. One explanation is that the initial tests go
a certain distance into the code and are stopped from proceeding further
because of the defects they encounter. Once these defects are fixed, the tests
proceed further, encounter newer parts of the code that have not been dealt
with before, and uncover new defects. This takes a "white box" or a code
approach to explain why new defects get unearthed with newer tests.

A second explanation for immunity is that when users (testers) start
using (exercising) a product, the initial defects prevent them from using
the full external functionality. As tests are run, defects are uncovered, and
problems are fixed, users get to explore new functionality that has not been
used before and this causes newer defects to be exposed. This "black box"
view takes a functionality approach to explain the cause for this "more we
test more defects corne up" phenomenon.

An alternative way of looking at this problem is not that the defects
develop immunity but the tests go deeper to further diagnose a problem and
thus eventually "kill the defects." Unfortunately, given the complex nature
of software and the interactions among multiple components, this final kill
happens very rarely. Defects still survive the tests, haunt the customers, and
cause untold havoc.



Software Testing

The need for constantly revising the tests to be run, with the intent
of identifying new strains of the defects, will take us to test planning
and different types of tests, especially regression tests. Regression tests
acknowledge that new fixes (pesticides) can cause new "side-effects"
(new strains of pests) and can also cause some older defects to appear.
The challenge in designing and running regression tests centers around
designing the right tests to combat new defects introduced by the immunity
acquired by a program against old test cases. We will discuss regression
tests in Chapter 8.

1.9 THE CONVOY AND THE RAGS

Defects in a program also typically display this convoy phenomenon.
They occur in clusters. Glenford Myers, in his seminal work on software
testing [MYER-79],proposed that the probability of the existence of more errors
in a section of a program is proportional to the number of errors already found in
that section.

Thismay sound counter-intuitive, but can be logically reasoned out. A fix
for one defect generally introduces some instability and necessitates another
fix.All these fixes produce side-effects that eventually cause the convoy of
defects in certain parts of the product.

From a test planning perspective, this means that if we find defects in
a particular part of product, more-not less-effort should be spent on
testing that part. This will increase the return on investments in testing as
the purpose of testing is find the defects. This also means that whenever a
product undergoes any change, these error-prone areas need to be tested as
they may get affected. Wewill cover these aspects in Chapter 8, Regression
Testing.



Figure 1.4
The number of defects
yet to be found
increases with the
number of defects
uncovered.

"0c:~
Q
Q)
.c
,g

~
en

~o

Number of defects found

A fix for a defect is made around certain lines of code. This fix can
produce side-effects around the same piece of code. This sets in spiraling
changes to the program, all localized to certain select portions of the code.
When we look at the code that got the fixes for the convoy 6f defects, it is
likely to look like a piece of rag! Fixing a tear in one place in a shirt would
most likely cause damage in another place. The only long-term solution in
such a case is to throwaway the shirt and create a new one. This amounts to
a re-architecting the design and rewriting the code.

1.10 THE POLICEMEN ON THE BRIDGE



Testers are probably best equipped to know the problems customers
may encounter. Like the second police officer in the above story, they know
people fall and they know why people fall. Rather than simply catch people
who fall (and thereby be exposed to the risk of a missed catch), they should
also look at the root cause for falling and advise preventive action. It may
not be possible for testers themselves to carry out preventive action. Just as
the second police officer had to enlist the help of an engineer to plug the
hole, testers would have to work with development engineers to make sure
the root cause of the defects are addressed. The testers should not feel that
by eliminating the problems totally their jobs are at stake. Like the second
policeman, their careers can be enriching and beneficial to the organization
if they harness their defect detection experience and transform some of it to
defect prevention initiatives.

Defect prevention is a part of a tester's job. A career as a tester can be
enriching and rewarding, if we can balance defect prevention and defect
detection activities. Some of these career path possibilities are encapsulated
in a three-stage model in Chapter 13,Common People Issues. We will now
visit the question ofwhat is the right balance between defect prevention and
defect detection.

1.11 THE ENDSOF THE PENDULUM

The eventual goal of any software organization is to ensure that the
customers get products that are reasonably free of defects. There are two
approaches to achieving this goal. One is to focus on defect detection and
correction and the second is to focus on defect prevention. These are also
called quality control focus and quality assurance focus.

Testing is traditionally considered as a quality control activity, with
an emphasis on defect detection and correction. We would like to take a
broader view of testing and believe that there are aspects of testing that are
also defect prevention oriented. For example, one of the aspects of white
box testing, discussed in Chapter 3, is static testing, that involves desk
checking, code walkthroughs, code reviews, and inspection. Even though
these are traditionally considered as "quality assurance" activities, planning
for overall testing activities with an intent to deliver quality products to
customers, cannot be done effectivelyunless we take a holistic view of what
can be done using quality assurance and what can be done with quality
control (or the traditional definition of testing).

Quality assurance is normally associated with process models such as
CMM, CMMI, ISO 9001, and so on. Quality control, on the other hand, is
associated with testing (that form the bulk of the discussions in this book).
This has caused an unnatural dichotomy between these two functions.
Unfortunately, organizations view these two functions as mutually exclusive,
"either-or" choices. We have even heard statements such as "with good
processes, testing becomes redundant" or "processesare mere overheads-we



Principles of Testing

Figure 1.5
Quality control and
quality assurance as
two methods to achieve
quality.

Dp.fect Detection ",
,,,

, ,. .. .. .. ., ,.......

Defect Prevention

....\,
: ;. ,, ,........

can find out everything by testing." It is almost as if there are two schools
of thought at either extremes of a pendulum-one rooting for defect
prevention (quality assurance) focus and the other rooting for the defect
detection (quality control) focus. It is also common to find an organization
swinging from one extreme to another over time, like a pendulum
(Figure 1.5).

Rather than view defect prevention and defect detection as mutually
exclusive functions or ends of a pendulum, we believe it is worthwhile to
view these two as supplementary activities, being done in the right mix.
Figure 1.6 gives a defect prevention-defect detection grid, which views
the two functions as two dimensions. The right mix of the two activities
corresponds to choosing the right quadrant in this grid.

When the focus on defect prevention is low, the emphasis on the use of
appropriate standards, reviews, and processes are very low. This acts as an
ideal "breeding ground" for defects. Most of the effort in ensuring quality
of a product is left in the hands of the testing and defect detection team. If
the focus on defect detection is also low (represented by the lower left-hand
quadrant), this is a bad state for an organization to be in. Lack of testing and

Figure 1.6
Relationship between
defect detection focus
and defect prevention
focus.

Last minute rushes

Higher people dependency

Testers as "heroes" and
"adversaries"

Not a healthy state!

Lack of standards foster
"defect breeding"

Lack of testing makes
defects reach the customers

May be resource intensive but
gives better payback

Institutionalizes quality

Makes quality visible to
customers

Double-edged sword!

Excessive process
orientation

Lack of testing makes
defects reach the customers

•
Defect prevention focus



18 SoAware Te;~ing"

defect detection activities does not "kill" these defects in time; hence the
defects reach the customers. This is obviously not a healthy state to be in.

Evenwhen the defect detection focus increases, with continued low defect
prevention focus (upper left hand quadrant), the testing functions become a
high-adrenalin rush, high-pressure job. Most defects are detected in the last
minute-before the product release. Testers thus become superheroes who
"save the day" by finding all the defects just in time. They may also become
adversaries to developers as they always seem to find problems in what
the developers do. This quadrant is better than the previous one, but ends
up being difficult to sustain because the last-minute adrenalin rush burns
people out faster.

Preventing an illness is more effective than curing it. People who prevent
defects usually do not get much attention. They are usually the unsung
heroes of an organization. Those who put out the fires are the ones who get
visibility, not necessarily those who make sure fires do not happen in the
first place. This, however, should not deter the motivation of people from
defect prevention.

As we saw in the previous section, defect prevention and defect detection
are not mutually exclusive. They need to be balanced properly for producing
a quality product. Defect prevention improves the quality of the process
producing the products while defect detection and testing is needed to catch
and correct defects that escape the process. Defect prevention is thus process
focused while defect detection is product focused. Defect detection acts as
an extra check to augment the effectiveness of defect prevention.

An increase in defect prevention focus enables putting in place review
mechanisms, upfront standards to be followed, and documented processes
for performing the job. This up front and proactive focus on doing things
right to start with causes the testing (or defect detection) function to add
more value, and enables catching any residual defects (that escape the defect
prevention activities) before the defects reach the customers. Quality is
institutionalized with this consistently high focus on both defect prevention



and defect detection. An organization may have to allocate sufficient
resources for sustaining a high level of both defect prevention and defect
detection activities (upper right-hand quadrant in Figure 1.6).

However, an organization should be careful about not relying too much
on defect prevention and reducing the focus on defect detection (lower right-
hand quadrant in Figure 1.6).Such a high focus on defect prevention and low
focus on defect detection would not create a feeling of comfort amongst the
management on the quality of product released since there are likely to be
minimal internal defects found. This feeling will give rise to introduction of
new processes to improve the effectiveness of defect detection. Toomuch of
processes and such defect prevention initiatives may end up being perceived
as abureaucratic exercise,not flexibleor adaptable to different scenarios.While
processes bring in discipline and reduce dependency on specific individuals,
they-when not implemented in spirit-could also end up being double-
edged swords, acting as a damper to people's drive and initiative. When an
organization pays equally high emphasis to defect prevention and defect
detection (upper right comer in the grid), it may appear that it is expensive
but this investment is bound to have a rich payback by institutional quality
internally and making the benefits visible externally to the customers.

An organization should choose the right place on each of these two-
defect detection and defect prevention - dimensions and thus choose
the right place in the grid. The relative emphasis to be placed on the two
dimensions will vary with the type of product, closeness to the release date,
and the resources available. Making a conscious choice of the balance by
considering the various factors will enable an organization to produce better
quality products. It is important for an organization not to over-emphasize
one of these at the expense of the other, as the next section will show.

1.12 MEN IN BLACK

As we can see from all the above discussions, testing requires abundant
talent in multiple dimensions. People in the testing profession should have
a customer focus, understanding the implications from the customer's
perspective. They should have adequate analytical skills to be able to choose
the right subset of tests and be able to counter the pesticide paradox. They
should think ahead in terms of defect prevention and yet be able to spot
and rectify errors that crop up. Finally (as we will see in the next section),
they must be able to perform automation functions.

Despite all these challenging technical and inter-personal skills required,
testing still remains a not-much-sought-after function. There was an
interesting experiment that was described by De Marco and Lister in their
book, Peopleware [DEMA-1987].The testing team was seeded with motivated
people who were "free from cognitive dissonance that hampers developers '.
when testing their own programs." The team was given an identity (by a
black dress, amidst the traditionally dressed remainder of the organization)



20 Software Testing

and tremendous importance. All this increased their pride in work and
made their performance grow by leaps and bounds, "almost like magic."
Long after the individual founding members left and were replaced by new
people, the "BlackTeam" continued its existence and reputation.

The biggest bottleneck in taking up testing as a profession is the lack of
self-belief. This lack of self-belief and apparent distrust of the existence of
career options in testing makes people view the profession as a launching
pad to do other software functions (notably, "development," a euphemism
for coding). As a result, testers do not necessarily seek a career path in testing
and develop skepticism towards the profession.

We have devoted an entire chapter in Part III of the book to career
aspirations and other similar issues that people face.A part of the challenge
that is faced is the context of globalization-the need to harness global
resources to stay competitive. We address the organizational issues arising
out of this in another chapter in Part III.

1.13 AUTOMATION SYNDROME



Principles ofTeiiting 21

If you go through the story closely there appear to be several reasons
for the crop failures that are not to do with the automation intent at all. The
frustration of the farmer should not be directed at automation but on the
process followed for automation and the inappropriate choices made. In the
second crop cycle, the reason for failure was lack of skills and in the third
cycle it is due to improper tool implementation.

In the first crop cycle, the farmer laid off his workers immediately after
the purchase of motorcycles and expected cost and time to corne down. He
repeated the same mistake for the third crop cycle. Automation does not
yield results immediately.

The moral of the above story as it applies to testing is that automation
requires careful planning, evaluation, and training. Automation may
not produce immediate returns. An organization that expects immediate
returns from automation may end up being disappointed and wrongly
blame automation for their failures, instead of objectively looking at their
level of preparedness for automation in terms of planning, evaluation,
and training.

A large number of organizations fail in their automation initiatives and
revert to manual testing. Unfortunately, they conclude-wrongly-that
automation will never work.

Testing,by nature, involves repetitive work. Thus, it lends itself naturally
to automation. However, automation is a double-edged sword. Some of
the points that should be kept in mind while harping on automation are
as follows.

~ Know first why you want to automate and what you want to
automate, before recommending automation for automation's sake.

~ Evaluate multiple tools. before choosing one as being most
appropriate for your need.

~ Try to choose tools to match your needs, rather than changing your
needs to match the tool's capabilities.



~ Train people first before expecting them to be productive.
~ Do not expect overnight returns from automation.

1.14 PUTTING IT ALL TOGETHER

We have discussed several basic principles of testing in this chapter.
These principles provide an anchor to the other chapters that we have
in rest of the book. We have organized the book into five parts. The
first part (which includes this chapter) is Setting the Context, which sets
the context for the rest of the book. In the chapter that follows, we cover
Software Development Ufe Cycle (SDLC)Models in the context of testing,
verification and validation activities.

In Part It Types of Testing, we cover the common types of testing.
Chapters 3 through 10cover white box testing, black box testing, integration
testing, system and acceptance testing, performance testing, regression
testing, internationalization testing, and ad hoc testing.

Part III, Select Topics in Specialized Testing, addresses two specific and
somewhat esoteric testing topics-object oriented testing in Chapter 11 and
usability and accessibility testing in Chapter 12.

Part IV,People and Organizational Issues in Testing, provides an oftignored
perspective. Chapter 13 addresses the common people issues like
misconceptions, career path concerns and so on. Chapter 14 address the
different organizational structures in vogue to set up effective testing teams,
especially in the context of globalization.

The final part, Part V, Test Management and Automation, addresses the
process, management, and automation issues to ensure effectivetesting in an
organization. Chapter 16 discusses test planning management and execution.
This discusses various aspects of putting together a test plan, tracking a testing
projectand related issues.Chapter 17goesinto detailsofthe benefits,challenges,
and approaches in test automation-an area of emerging and increasing
importance in the test community. The final chapter, Chapter 18, goes into
details of what data are required to be captured and what analysis is to
be performed for measuring effectiveness of testing, quality of a product
and similar perspectives and how this information can be used to achieve
quantifiable continuous improvement.

While we have provided the necessary theoretical foundation in different
parts of the book, our emphasis throughout the book has been on the state of
practice. This section should set the context for what the reader can expect
in rest of the book.



One of the early seminal works on testing is [MYER-79].In particular,
the example of trying to write test cases for verifying three numbers to
be the sides of a valid triangle still remains one of the best ways to bring
forth the principles of testing. [DEMA-87] provides several interesting
perspectives of the entire software engineering discipline. The concept
of black team has been illustrated in that work. The emphasis required for
process and quality assurance methodologies and the balance to be struck
between quality assurance and quality control are brought out in [HUMP-
86]. Some of the universally applicable quality principles are discussed in
the classics [CROS-80]and [DEMI-86].[DIJK-72],a Turing Award lecture
brings out the doctrine of program testing can never prove the absence of
defects. [BEIZ-90]discusses the pesticide paradox.

1. We have talked about the pervasiveness of software as a reason
why defects left in a product would get detected sooner than later.
Assume that televisions with embedded software were able to
download, install and self-correct patches over the cable network
automatically and the TV manufacturer told you that this would
just take fiveminutes every week "at no cost to you, the consumer."
Would you agree? Give some reasons why this is not acceptable.

2. Your organization has been successful in developing a client-server
application that is installed at several customer locations. You are
changing the application to be a hosted, web-based application that
anyone can use after a simple registration process. Outline some of
the challenges that you should expect from a quality and testing
perspective of the changed application.

3. The following were some of the statements made by people in a
product development organization. Identify the fallacies if any
in the statements and relate it to the principles discussed in this
chapter.
a. "The code for this product is generated automatically by a
CASEtool- it is therefore defect - free."

b. "We are certified according to the latest process models - we
do not need testing."

c. "Weneed to test the software with dot matrix printers because
we have never released a product without testing with a dot
matrix printer."



d. "I have run all the tests that I have been running for the last
two releases and I don't need to run any more tests."

e. "This automation tool is being used by our competitors -
hence we should also use the same tool."

4. Assume that each defect in gathering requirements allowed to go
to customers costs $10,000,and that the corresponding costs for
design defects and coding defects are $1,000and $100,respectively.
Also, assume that current statistics indicate that on average ten
new defects come from each of the phases. In addition, each phase
also lets the defects from the previous phase seep through. What
is the total cost of the defects under the current scenario? If you
put a quality assurance process to catch 50% of the defects from
each phase not to go to the next phase, what are the expected cost
savings?

5. You are to write a program that adds two two-digit integers. Can
you test this program exhaustively? If so, how many test cases
are required? Assuming that each test case can be executed and
analyzed in one second, how long would it take for you to run all
the tests?

6. We argued that the number of defects left in a program is
proportional to the number of defects detected. Give reasons why
this argument looks counterintuitive. Also, give practical reasons
why this phenomenon causes problems in testing.



In this chapter-

,/ Phases of software project
,/ Quality, quality assurance, and quality control
,/ Testing, verification, and validation
,/ Process model to represent different phases
,/ Life cycle models



26 Software jesting

2.1 PHASES OF SOFTWARE PROJECT

A software project is made up of a series of phases. Broadly,most software
projects comprise the following phases.

~ Requirements gathering and analysis
~ Planning
~ Design
~ Development or coding
~ Testing
~ Deployment and maintenance

2.1.1 Requirements Gathering and Analysis
During requirements gathering, the specific requirements of the software
to be built are gathered and documented. If the software is bespoke
software, then there is a single customer who can give these requirements.
If the product is a general-purpose software, then a product marketing
team within the software product organization specifies the requirements
by aggregating the requirements of multiple potential customers. In
either case, it is important to ensure that the right requirements are
captured at every stage. The requirements get documented in the form
of a System Requirements Specification (SRS)document. This document
acts as a bridge between the customer and the designers chartered to build
the product.

2.1.2 Planning
The purpose of the planning phase is to come up with a schedule, the
scope, and resource requirements for a release. A plan explains how the
requirements will be met and by which time. It needs to take into account
the requirements-what will be met and what will not be met-for the
current release to decide on the scope for the project, look at resource
availability, and to come out with set of milestones and release date for
the project. The planning phase is applicable for both development and
testing activities. At the end of this phase, both project plan and test plan
documents are delivered.

2.1.3 Design
The purpose of the design phase is to figure out how to satisfy the
requirements enumerated in the System Requirements Specification
document. The design phase produces a representation that will be used
by the following phase, the development phase. This representation should
serve two purposes. First, from this representation, it should be possible
to verify that all the requirements are satisfied. Second, this representation



Sojtware pevelgpmeftt LifeCycle,Models 27

should give sufficient information for the development phase to proceed
with the coding and implementation of the system. Design is usually split
into two levels-high-Ievel design and low-level or a detailed design. The
design step produces the system design description (SDD)document that
will be used by development teams to produce the programs that realize
the design.

2.1.4 Development or Coding

Design acts as ablueprint for the actual coding to proceed. This development
or coding phase comprises coding the programs in the chosen programming
language. It produces the software that meets the requirements the design
was meant to satisfy. In addition to programming, this phase also involves
the creation of product documentation.

2.1.5 Testing

As the programs are coded (in the chosen programming language), they
are also tested. In addition, after the coding is (deemed) complete, the
product is subjected to testing. Testing is the process of exercising the
software product in pre-defined ways to check if the behavior is the same
as expected behavior. By testing the product, an organization identifies
and removes as many defects as possible before shipping it out.

2.1.6 Deployment and Maintenance

Once a product is tested, it is given to the customers who deploy it in their
environments. As the users start using the product in their environments,
they may observe discrepancies between the actual behavior of the product
and what they were given to expect (either by the marketing people or
through the product documentation). Such discrepancies could end up as
product defects, which need to be corrected. The product now enters the
maintenance phase, wherein the product ismaintained or changed to satisfy
the changes that arise from customer expectations, environmental changes,
etc. Maintenance is made up of corrective maintenance (for example, fixing
customer-reported problems), adaptive maintenance (for example, making
the software run on a new version of an operating system or database),
and preventive maintenance (for example, changing the application program
code to avoid a potential security hole in an operating system code).

2.2 QUALITY, QUALITY ASSURANCE, AND QUALITY CONTROL

A software product is designed to satisfy certain requirements of a
given customer (or set of customers). How can we characterize this
phrase-"satisfying requirements"? Requirements get translated into
software features, each feature being designed to meet one or more of the



28 Software Testing

requirements. For each such feature, the expected behavior is characterized
by a set of test cases. Each test case is further characterized by

1. The environment under which the test case is to be executed;
2. Inputs that should be provided for that test case;
3. How these inputs should get processed;
4. What changes should be produced in the internal state or

environment; and
5. What outputs should be produced.

The actual behavior of a given software for a given test case, under a
given set of inputs, in a given environment, and in a given internal state is
characterized by

1. How these inputs actually get processed;
2. What changes are actually produced in the internal state or

environment; and
3. What outputs are actually produced.

If the actual behavior and the expected behavior are identical in all
their characteristics, then that test case is said to be passed. If not, the given
software is said to have a defect on that test case.

How do we increase the chances of a product meeting the requirements
expected of it, consistently and predictably? There are two types of
methods-quality control and quality assurance.

Quality control attempts to build a product, test it for expected behavior
after it is built, and if the expected behavior is not the same as the actual
behavior of the product, fixes the product as is necessary and rebuilds the
product. This iteration is repeated till the expected behavior of the product
matches the actual behavior for the scenarios tested. Thus quality control is
defect-detection and defect-correction oriented, and works on the product
rather than on the process.

Quality assurance, on the other hand, attempts defect prevention by
concentrating on the process of producing the product rather than working
on defect detection/correction after the product is built. For example,
instead of producing and then testing a program code for proper behavior
by exercising the built product, a quality assurance approach would be to
first review the design before the product is built and correct the design
errors in the first place. Similarly,to ensure the production of a better code,
a quality assurance process may mandate coding standards to be followed
by all programmers. As can be seen from the above examples, quality
assurance normally tends to apply to all the products that use a process.
Also, since quality assurance continues throughout the life of the product
it is everybody's responsibility; hence it is a staff function. In contrast, the
responsibility for quality control is usually localized to a quality control
team. Table2.1summarizes the key distinctions between quality control and
quality assurance.



Software Development Life Cycle lVfodeis 29

Table 2.1. Difference between quality assurance and quality control.

We will see more details of quality assurance methods such as reviews
and audits in Chapter 3. But the focus of the rest of this book is on software
testing, which is essentially a quality control activity. Let us discuss more
about testing in the next section.

2.3 TESTING, VERIFICATION, AND VALIDATION

The narrow definition of the term "testing" is the phase that follows coding
and precedes deployment. Testing is traditionally used to mean testing of
the program code. However, coding is a downstream activity, as against
requirements and design that occur much earlier in a project life cycle.
Given that the objective of a software project is to minimize and prevent
defects, testing of program code alone is not sufficient. As we saw in the
last chapter, defects can creep in during any phase and these defects should be
detected as close to the point of injection as possible and not wait till the testing
of programs. Hence against this, if each phase is "tested" separately as and
when the phase is completed (or, better still, as the phase is being executed),
then defects can be detected early, thereby reducing the overall costs.

Timely testing increases the chances of a product or service meeting the
customer's requirements. When a product is tested with appropriate and
realistic tests that reflect typical usage patterns by the intended users, the
chances of the product satisfying the customer's requirement ismuch higher.
While testing does not guarantee zero defects, effective testing certainly
increases the chances of customer acceptance of the software.

The purpose of testing is to uncover defects in the system (and to have
someone fix the defects). Testing is done by a set of people within a software
product (or service) organization whose goal and charter is to uncover the
defects in the product before it reaches the customer (see Section 1.3).As we
saw in the previous chapter, the purpose of testing is NOT to prove that the
product has no defects. The purpose of software testing is to find defects in a
software product. Aswe will see in the chapters on people and organizational



Sofrwar~< Iesting

issues (Chapters 13,14), the reward systems and the organization structures
should create and foster an environment that encourages this purpose
of testing.

Testing is NOT meant to replace other ways of ensuring quality (like
reviews). It is one of the methods to detect defects in a software product.
There are other methods that achieve the same function. For example, we
will see later that following well-defined processes and standards reduces
the chances of defects creeping into a software. We will also discuss other
methods like reviews and inspections, which actually attempt to prevent
defects coming into the product. Tobe effective,testing should complement,
supplement, and augment such quality assurance methods discussed in the
previous section.

The idea of catching defects within each phase, without letting them
reach the testing phase, leads us to define two more terms-verification
and validation.

During the requirements gathering phase, the requirements are faithfully
captured. The SRSdocument is the product of the requirements phase. To
ensure that requirements are faithfully captured, the customer verifies this
document. The design phase takes the SRS document as input and maps
the requirements to a design that can drive the coding. The SDD document
is the product of the design phase. The SDD is verified by the requirements
team to ensure that the design faithfully reflects the SRS,which imposed the
conditions at the beginning of the design phase.

Verification takes care of activities to focus on the question "Are we
building the product right?" and validation takes care of a set of activities to
address the question "Are we building the right product?"

To build the product right, certain activities/conditions/procedures are
imposed at the beginning of the life cycle. These activities are considered
"proactive" as their purpose is to prevent the defects before they take shape.
The process activities carried out during various phases for each of the
product releases can be termed as verification. Requirements review, design
review, and code review are some examples of verification activities.

To build the right product, certain activities are carried out during
various phases to validate whether the product is built as per specifications.
These activities are considered "reactive" as their purpose is to find defects
that affect the product and fix them as soon as they are introduced. Some
examples of validation include unit testing performed to verify if the code
logic works, integration testing performed to verify the design, and system
testing performed to verify that the requirements are met.

To summarize, there are different terminologies that may stand for the
same or similar concepts. For all practical purposes in this book, we can
assume verification and quality assurance to be one and the same. Similarly
quality control, validation, and testing mean the same.



Software Development Life

2.4 PROCESSMODEL TO REPRESENTDIFFERENT PHASES

A process model is a way to represent any given phase of software
development that effectively builds in the concepts of validation and
verification to prevent and minimize the delay between defect injection
and defect detection (and eventual correction). In this model, each phase
of a software project is characterized by the following.

~ Entry criteria, which specify when that phase can be started. Also
included are the inputs for the phase.

~ Tasks, or steps that need to be carried out in that phase, along with
measurements that characterize the tasks.

~ Verification, which specifies methods of checking that the tasks
have been carried out correctly.

~ Exit criteria, which stipulate the conditions under which one can
consider the phase as done. Also included are the outputs for only
the phase.

This model, known as the Entry Task Verification eXit or ETVXmodel,
offers several advantages for effectiveverification and validation.

1. Clear entry criteria make sure that a given phase does not start
prematurely.

2. The verification for each phase (or each activity in each phase)
helps prevent defects, or at least, minimizes the time delay between
defect injection and defect detection.

3. Documentation of the detailed tasks that comprise each phase
reduces the ambiguity in interpretation of the instructions and thus
minimizes the variations that can come from repeated executions
of these tasks by different individuals.

4. Clear exit criteria provide a means of validation of the phase, after
the phase is done but before handing over to the next phase.

An example of applying the ETVXmodel to the design phase is presented
in Figure 2.1.

Figure 2.1
ETVX model applied
to design. Entry criteria:

Approval of SRS by customer

08
Input:

Approved SRS

Exit criteria:
• Complete traceability between
design and SRS

• Development team ready to start
programming

D8*; ti,::>:

Output:
• Architecture documents
• Design documents
• Program specifications



32 Software Testing

2.5 LIFE CYCLEMODELS

The ETVXmodel characterizes a phase of a project. A Life Cycle model
describes how the phases combine together to form a complete project or
life cycle. Such a model is characterized by the following attributes.

The activities performed In any given software project, apart from the
most common activities or phases-requirements gathering, design,
development, testing, and maintenance-there could be other activities as
well. Some of these activities could be technical activities (for example,
porting) and some could be non-technical (for example, hiring).

The deliverables from each activity Each activity produces a set of
deliverables, which are the end products of that activity. For example, the
requirements gathering phase produces the SRS document, the design
phase produces the SOD document, and so on.

Methods of validation of the deliverables The outputs produced by a
given activity represent the goal to be satisfied by that activity. Hence it is
necessary to have proper validation criteria for each output.

The sequence of activities The different activities work together in
unison in a certain sequence of steps to achieve overall project goals. For
example, the process of requirements gathering may involve steps such as
interviews with customers, documentation of requirements, validation of
documented requirements with customers, and freezing of requirements.
These steps may be repeated as many times as needed to get the final
frozen requirements.

Methods of verification of each activity, including the mechanism of
communication amongst the activities The different activities interact
with one another by means of communication methods. For example,
when a defect is found in one activity and is traced back to the causes in
an earlier activity, proper verification methods are needed to retrace steps
from the point of defect to the cause of the defect.

Wewill now look at some of the common life cyclemodels that are used
in software projects. For each model, we will look at:

1. a brief description of the model;
2. the relationship of the model to verification and validation

activities; and
3. typical scenarios where that life cycle model is useful.

2.5.1 Waterfall Model

In the Waterfall model, a project is divided into a set of phases (or activities).
Eachphase is distinct, that is, there are clear lines of separation between the
phases, with very clear demarcation of the functions of each of the phases.



Cycle Models

Figure 2.2
Waterfall model.

A project starts with an initial phase, and upon completion of the phase,
moves on to the next phase. On the completion of this phase, the project
moves to the subsequent phase and so on. Thus the phases are strictly
time sequenced.

We depict one example of a project in the Waterfall model in Figure 2.2.
The project goes through a phase of requirements gathering. At the end of
requirements gathering, a System Requirements Specification document is
produced. Thisbecomestheinputto the designphase.During the designphase,
a detailed design is produced in the form of a System Design Description.
With the SOD as input, the project proceeds to the development or coding
phase, wherein programmers develop the programs required to satisfy the
design. Once the programmers complete their coding tasks, they hand the
product to the testing team, who test the product before it is released.

If there is no problem in a given phase, then this method can work,
going in one direction (like a waterfall). But what would happen if there
are problems after going to a particular phase? For example, you go into
the design phase and find that it is not possible to satisfy the requirements,



34 Software Testing

going by the current design approach being used. What could be the
possible causes and remedies? Youmay try an alternative design if possible
and see if that can satisfy the requirements. If there are no alternative design
approaches possible, then there must be feedback to the requirements phase
to correct the requirements.

Let us take the example one step further. Suppose a design was created for
a given set of requirements and the project passed on to the programming/
development phase. At this point of time, it was found that it was not possible
to develop the programs because of some limitations. What would you do?
One approach would be to tryout alternative strategies in the development
phase so that the design could still be satisfied. Another possibility could be
that there are flaws in design that cause conflicts during d.evelopment and
hence the design has to be revisited. When the design phase is revisited-
like in the previous case-it may happen that the problem may have to be
addressed in the requirements phase itself. So, a problem in one phase could
potentially be traced back to any of the previous phases.

Sinceeach phase has an output, the latter can be validated against a set of
criteria. To increase the effectiveness, the completion criteria for each output
can be published a priori. Beforea phase starts, the completion criteria for the
previous phase can be checked and this can act as a verification mechanism
for the phase. This can minimize the kind of delays we discussed in the
example above.

The main strength of the Waterfall Model is its simplicity. The model
is very useful when a project can actually be divided into watertight
compartments. But very few software projects can be divided thus. The
major drawback in the Waterfall model arises from the delay in feedback
among the phases, and thus the ineffectiveness of verification and validation
activities. An error in one phase is not detected till at least the next phase.
When a given phase detects an error, the communication is only to the
immediately preceding phase. This sequential nature of communication
among the phases can introduce inordinate delays in resolving the problem.
The reduced responsiveness that is inherent in the model and the fact that
the segregation of phases is unrealistic severely restricts the applicability of
this model.

2.5.2 Prototyping and Rapid Application Development Models
Prototyping and Rapid Application Development (RAD)models recognize
and address the following issues.

1. Early and frequent user feedback will increase the chances of a
software project meeting the customers' requirements.

2. Changes are unavoidable and the software development process
must be able to adapt itself to rapid changes.



Software Development Life Cycle Models 35

The Prototyping model comprises the following activities.

1. The software development organization interacts with customers
to understand their requirements.

2. The software development organization produces a prototype to show
how the eventual software system would look like. This prototype
would have the models of how the input screens and output reports
would look like, in addition to having some "empty can functionality"
to demonstrate the workflow and processing logic.

3. The customer and the development organization review the
prototype frequently so that the customer's feedback is taken very
early in the cycle (that is, during the requirements gathering phase).

4. Basedon the feedback and the prototype that isproduced, the software
development organization produces the System Requirements Spe-
cification document.

5. Once the SRS document is produced, the prototype can be dis-
carded.

6. The SRS document is used as the basis for further design and
development.

Thus, the prototype is simply used as a means of quickly gathering (the
right) requirements. This model has built-in mechanisms for verification
and validation of the requirements. As the prototype is being developed, the
customer's frequent feedback acts as a validation mechanism. Once the SRSis
produced, it acts as the verificationmechanism for the design and subsequent
steps. But the verification and validation activities of the subsequent phases
are actually dictated by the life cycle model that is followed after the SRSis
obtained.

This model is obviously advantageous when a customer can participate
by giving feedback. This model is also useful in cases where the feedback
can be easily quantified and incorporated, for example, determining user
interface, predicting performance, and so on.

For a general-purpose product, which is meant for many customers,
there is no single customer whose feedback can be taken as final. In these
cases, a product manager in the marketing group of the product vendor
usually plays the role of the eventual customer. Hence the applicability of
this model is somewhat limited to general-purpose products. Furthermore,
the prototype is used as a means of capturing requirements and is not
necessarily meant to be used afterwards. Oftentimes, the prototype (or parts
of the prototype) makes its way to becoming the product itself. This can
have undesirable effects as the prototype usually employs several short
cuts, unstructured methods, and tools to achieve a quick turnaround. Such
short cuts are potential sources of defects in live environments and thus can
place a heavy burden on maintenance and testing.

The Rapid Application Development model is a variation of the
Prototyping Model. Like the Prototyping Model, the RAD Model relies on
feedback and interaction by the customers to gather the initial requirements.



36 Software Testing

However, the Prototyping model differs from the RAD Madelon
two counts.
First, in the RAD Model, it is not a prototype that is built but the actual

product itself.That is, the built application (prototype, in the previous model)
is not discarded. Hence, it is named Rapid Application Development model.

Second, in order to ensure formalism in capturing the requirements and
proper reflection of the requirements in the design and subsequent phases, a
Computer Aided Software Engineering (CASE)tool is used throughout the
life cycle, right from requirements gathering. Such CASEtools have

ffi methodologies to elicit requirements;
ffi repositories to store the gathered requirements and all downstream

entities such as design objects; and
ffi mechanisms to automatically translate the requirements stored

in the repositories to design and generate the code in the chosen
programming environment.

Themethodologies provided by a CASEtool can provide inbuilt means of
verification and validation. For example, the toolmay be able to automatically
detect and resolve inconsistencies in data types or dependencies. Since the
design (and, perhaps, even the program code) canbe automatically generated
from the requirements, the validation can be very complete, extending to all
the downstream phases, unlike the Prototyping model.

This method can have wider applicability for even general-purpose
products. The automatic generation of the design and programs produced
by a CASE tool makes this model more attractive. The cost of such CASE
tools is a factor that an organization would have to consider before deciding
on the use of this model for a given project. In addition, CASEtools and this
model is generally more suited for applications projects rather than systems
type projects.

2.5.3 Spiral or Iterative Model
The Spiral or Iterative model follows a process in which the requirements
gathering, design, coding, and testing are performed iteratively till all
requirements are met. There is also a good amount of overlap among the
activities of requirements gathering, design, coding, and testing following
this model. What phase the product is in is difficult to conclude as each
requirement can be at a different phase. The only conclusion that can be
made is at what phase each of the requirements is in. If a defect is produced
in any phase of a given requirement, it may cause that requirement to revisit
an earlier phase. This model enables incremental development whereby
the product evolves, with requirements getting added to it dynamically.
This enables the product to be demonstrated, at any point of time, with the
functionality available at that point of time. It also enables the "increments"
to be sent to the customer for approval. The progress of the product can be



Software Development Life Cycle Models 37

Table 2.2 Some product requirements and phases.

Figure 2.3
Spiral model.

seen from the beginning of the project as the model delivers "increments"
at regular intervals. Even though it will be very difficult to plan a release
date following this model, it allows the progress to be tracked and the
customer approvals to be obtained at regular intervals, thereby reducing
the risk of finding major defects at a later point of time. Table 2.2 gives an
example of phases for some of the requirements in the product.

Figure 2.3 (the coloured figure is available on page 457)depicts the Spiral
model and the phases involved in the model, for the example on Table2.2.As
can be seen, each requirement is "spiraling outwards" through the different
phases as the entire project evolves.

2.5.4 The V Model

The Waterfall Model viewed testing as a post-development (that is, post-
coding) activity. The Spiral Model took this one step further and tried
to break up the product into increments each of which can be tested



38

separately. The V Model starts off being similar to the Waterfall Model
in that it envisages product development to be made up of a number of
phases or levels. However, the new perspective that the V Model brings
in is that different types of testing apply at different levels. Thus, from a
testing perspective, the type of tests that need to be done at each level vary
significantly.

For instance, consider a typical product development activity represented
as a Waterfall Model earlier in Figure 2.2. The system starts with the
overall business requirements from the point of view of customers. These
requirements cover hardware, software, and operational requirements.
Since our focus is on the software, moving from overall requirements
to software requirements becomes the next step. In order to realize the
software requirements, the proposed software system is envisaged as a set
of subsystems that work together. This high-level design (of breaking the
system into subsystems with identified interfaces) then gets translated to
a more detailed or low-level design. This detailed design goes into issues
like data structures, algorithm choices, table layouts, processing logic,
exception conditions, and so on. It results in the identification of a number
of components, each component realized by program code written in
appropriate programming languages.

Given these levels, what kind of tests apply in each of these levels? To
begin with, for overall business requirements, eventually whatever software
is developed should fit into and work in this overall context and should be
accepted by the end users, in their environment. This testing, the final proof
of the pudding, is acceptance testing. But, before the product is deployed in
the customer's environment, the product vendor should test it as an entire
unit to make sure that all the software requirements are satisfied by the
product that is developed. This testing of the entire software system can be
called system testing. Sincehigh-level design views the system as being made
up of interoperating and integrated (software) subsystems, the individual
subsystems should be integrated and tested together before a full blown
system test can be done. This testing of high-level design corresponds to
integration testing. The components that are the outputs of the low-level
design have to be tested independently before being integrated. Thus, the
testing corresponding to the low-level design phase is component testing.
Finally, since coding produces several program units, each of these smaller
program units have to be tested independently before trying to combine
them together to form components. This testing of the program units forms

. unit testing.
Figure 2.4 depicts the different types of testing that apply to each of the

steps. For simplicity,we have not shown the planning phase as a separate
entity since it is common for all testing phases. But, it is not possible to
execute any of these tests until the product is actually built. In other words,
the step called "testing" is now broken down into different sub-steps called
acceptance testing, system testing, and so on as shown in Figure 2.4.So, it is
still the case that all the testing execution related activities are done only at
the end of the life cycle.



Figure 2.4
Phases of testing for
different development
phases.

Software Development Life Cycle Models 39

,/
,/
,/

,/
,/

,/
,/
,/
,/
,/

,/
,/

Even though the execution of the tests cannot be done till the product is
built, the design of tests can be carried out much earlier. In fact, if we look at
the aspect of skill sets required for designing each type of tests, the people best
suited to design each of these tests are those who are actually performing the
function of creating the corresponding artifact. For example, the best people
to articulate what the acceptance tests should be are the ones who formulate
the overall business requirements (and, of course, the customers, where
possible). Similarly, the people best equipped to design the integration tests
are those who know how the system is broken into subsystems and what the
interfaces between the subsystems are-that is, those who perform the high-
level design. Again, the people doing development know the innards of the
program code and thus are best equipped to design the unit tests.

Not only are the skill sets required for designing these different types of
tests different, but also, there is no reason to defer the designing of the tests
till the very end. As and when each activity on the left-hand side of the "V"
is being carried out, the design of the corresponding type of tests can be
carried out. By performing an early design of the tests and deferring only
the test execution till the end, we achieve three important gains.

~ First, we achieve more parallelism and reduce the end-of-cycle time
taken for testing.

~ Second, by designing tests for each activity upfront, we are building
in better upfront validation, thus again reducing last-minute
surprises.

~ Third, tests are designed by people with appropriate skill sets.



40 softwar( Testing
.....•............." ••'M_"M.~~WJ ._

'J; ~ ,*,i;0\,@?% iicW>" ' .. '/ -) :::7";-;;~:::@~2:::;:~t'(, ':"" ":;, ,'- ,.','.+',{ /: ,'H'

Figure 2.5
V Model. Acceptance

test design

Unit test design

This is the basis for the V Model, which presents excellent advantages for
verification and validation. As shown in Figure 2.5, for each type of test, we
move the design of tests upstream, along with the actual activities and retain
the test execution downstream, after the product is built.

2.5.5 Modified V Model
The V Model split the design and execution portion of the various types
of tests and attached the test design portion to the corresponding earlier
phases of the software life cycle.

An assumption made there was that even though the activity of test
execution was split into execution of tests of different types, the execution
cannot happen until the entire product is built. For a given product, the
different units and components can be in different stages of evolution. For
example, one unit could be still under development and thus be in the unit-
testing phase whereas another unit could be ready for component testing
while the component itself may not be ready for integration testing. There
may be components that are ready (that is, component tested) for integration
and being subjected to integration tests (along with other modules which
are also ready for integration, provided those modules can be integrated).
The V Model does not explicitly address this natural parallelism commonly
found in product development.

In the modified V Model, this parallelism is exploited. When each unit
or component or module is given explicit exit criteria to pass on to the
subsequent stage, the units or components or modules that satisfy a given
phase of testing move to the next phase of testing where possible, without



Figure 2.6
Modified V Model.

necessarily waiting for all the units or components or modules to move in
unison from one phase of testing to another, as shown in Figure 2.6.

Just as the V Model introduced various types of testing, the modified
V model introduces various phases of testing. A phase of testing has a one-
to-one mapping to the types of testing, that is, there is a unit-testing phase,
component-testing phase, and so on. Once a unit has completed the unit-
testing phase, it becomes part of a component and enters the component-
testing phase. It then moves to integration-testing phase and so on. Rather
than view the product as going through different types of tests (as the
V model does), the modified V Model views each part of the product to
go through different phases of testing. These are actually two sides of the
same coin and thus provide complimentary views. The main advantage the
modified V model brings to the table is the recognition of the parallelism
present in different parts of the product and assigning each part to the most
appropriate phase of testing that is possible. In Figure 2.6, the columns of
the table represents one side ofV,and rows (which are test phases) represent
the other side of V.

In Figure 2.6,notice that different phases of testing are done in parallel.
While starting a phase of testing it is important to look at whether the
product is ready for testing. It is determined by a set of entry criteria. The
earliest possible quality to start the next phase of testing is denoted by entry
criteria, and to start the next phase of testing the earlier phase need not have
completed. The testing phases are also associated with a set of exit criteria
to complete the test activities for each phase. They are determined by exit
criteria. The entry and exit criteria for each of the phases ensure that right
quality of product delivered for starting the test and right amount of testing
is completed for the release. Even though it is indicated in the picture all of
the test phases finish at the same time, practically it can have different time
lines. The longest phase determines the release date.

In Figure 2.6,there are two additional activitiesthat have not been discussed
before. The coloured figure is available on page 458.These are "Component
(1,2... ) Complete" and "Components Complete"; these are not additional

Design Unit test Components Components IT complete system
complete complete (1,2 ...) complete complete

complete

Unit testing
,

l~lComponent
testing Entry criteria ______________

Integration
testing ~
System testing ~
Acceptance

Exit criteriatesting



42 SQftwateTesting

phases in a life cycle. They have been introduced just to denote that
integration testing can start after two components have been completed,
and when all components are integrated and tested, the next phase of
testing, that is, system testing can start.

Table 2.3 Model applicability and relevance to verification and validation.



2.5.6 Comparison of Various Life Cycle Models

As can be seen from the above discussion, each of the models has its
advantages and disadvantages. Each of them has applicability in a specific
scenario. Each of them also provides different issues, challenges, and
opportunities for verification and validation. We summarize in Table 2.3
the salient points about applicability and relevance to verification and
validation for each of the models.

The Waterfall Model was initially covered in [ROYC-70].The origins of the
Prototyping Model come from [BROO-75].The Spiral Model was originally
proposed in [BOEH-88].[GRAO-97]provides some variations to the Spiral
Model. [RAME-2002],[PRES-97]and [HUMP-86]provide overviews to all
the models.

1. Which SOLCmodel would be most suitable for each of the following
scenarios?

a. The product is a bespoke product for a specific customer, who
is always available to give feedback.

b. The same as above, except that we also have access to a CASE
tool that generates program code automatically.

c. A general purpose product, but with a very strong product
marketing team who understand and articulate the overall
customer requirements very well.

d. A product that is made of a number of features that become
available sequentially and incrementally.

2. Which of the following products would you say is of "high
quality," based on the criteria we discussed in the book? Justify
your answer.
a. Three successive versions of the product had respectively 0,

79, and 21 defects reported.
b. Three successive versions of the product had respectively 85,

90, and 79 defects reported.
3. List three or more challenges from the testing perspective for each

of the following models:
a. Spiral Model.
b. VModel.
c. Modified VModel.



I
4. What are some of the challenges that you should expect when

moving from the VModel to the Modified VModel?
5. Figure 2.1gave the ETVXDiagram for the design phase of a software

project. Draw a similar ETVXDiagram for the coding phase.
6. In the book we have discussed the Spiral Model as being ideally

suited for a product that evolves in increments. Discuss how the
VModel is applicable for such an incrementally evolving product.



TvpesofTe

a Chapter 6

System and Acceptance Testing

a Chapter 7

Performance Testing

a Chapter 8

Regression Testing

a Chapter 9

Internationalization (118n) Testing

a Chapter 10

Ad hoc Testing



This part of the book discusses various types of tests. The chapters
progress from the types of tests closer to code to those closer to users.
White box testing, which tests the programs by having an internal
knowledge of program code, is discussed in Chapter 3. Black box
testing, which tests the product behavior by only knowing the
external behavior as dictated by the requirements specifications, is
discussed in Chapter 4. As software gets developed in a modular
fashion and the modules have to be integrated together, integration
testing is covered in Chapter 5. System and acceptance testing,
which tests a product completely from a user's perspective in
environments similar to customer deployments, is discussed
in Chapter 6. Performance testing, which tests the ability of the
system to withstand typical and excessive work loads, is discussed
in Chapter 7. Since software is always characterized by change and
since changes should not break what is working already, regression
testing becomes very important and is discussed in Chapter 8. As
software has to be deployed in multiple languages across the world,
internationalization testing, the topic of Chapter 9, comes into play.
Finally, adhoc testing, in Chapter 10, addresses the methods of
testing a product in typical unpredictable ways that end users may

subject the product to.



In this chapter-

./ What is white box testing?

./ Static testing

./ Structural testing

./ Challenges in white box testing



3.1 WHAT IS WHITE BOX TESTING?

Every software product is realized by means of a program code. White box
testing is away of testing the external function ality of the code by examining
and testing the program code that realizes the external functionality. This
is also known as clear box, or glass box or open box testing.

White box testing takes into account the program code, code structure,
and internal design flow. In contrast, black box testing, to be discussed in
Chapter 4, does not look at the program code but looks at the product from
an external perspective.
A number of defects come about because of incorrect translation of

requirements and design into program code. Someother defects are created
by programming errors and programming language idiosyncrasies. The
different methods of white box testing discussed in this chapter can help
reduce the delay between the injection of a defect in the program code
and its detection. Furthermore, since the program code represents what
the product actually does (rather than what the product is intended to
do), testing by looking at the program code makes us get closer to what
the product is actually doing.
As shown in Figure 3.1, white box testing is classified into "static" and

"structural" testing. The corresponding coloured version of Figure 3.1 is
available on page 458. We will look into the details of static testing in
Section 3.2 and take up structural testing in Section3.3.

Figure 3.1
Classification of white
box testing.

3.2 STATIC TESTING

Static testing is a type of testing which requires only the source code of the
product, not the binaries or executables. Static testing does not involve



Whfte Box Testing 49

executing the programs on computers but involves select people going
through the code to find out whether

>I< the code works according to the functional requirement;
>I< the code has been written in accordance with the design developed

earlier in the project life cycle;
>I< the code for any functionality has been missed out;
>I< the code handles errors properly.

Static testing can be done by humans or with the help of specialized tools.

3.2.1 Static Testing by Humans

These methods rely on the principle of humans reading the program code
to detect errors rather than computers executing the code to find errors.
This process has several advantages.

1. Sometimes humans can find errors that computers cannot. For
example, when there are two variables with similar names and the
programmer used a "wrong" variable by mistake in an expression,
the computer will not detect the error but execute the statement
and produce incorrect results, whereas a human being can spot
such an error.

2. By making multiple humans read and evaluate the program, we
can get multiple perspectives and therefore have more problems
identified up front than a computer could.

3. A human evaluation of the code can compare it against the
specifications or design and thus ensure that it does what is
intended to do. This may not always be possible when a computer
runs a test.

4. A human evaluation can detect many problems at one go and can
even try to identify the root causes of the problems. More often than
not, multiple problems can get fixed by attending to the same root
cause. Typically, in a reactive testing, a test uncovers one problem
(or, at best, a few problems) at a time. Often, such testing only
reveals the symptoms rather than the root causes. Thus, the overall
time required to fix all the -problems can be reduced substantially
by a human evaluation.

5. By making humans test the code before execution, computer
resources can be saved. Of course, this comes at the expense of
human resources.

6. A proactive method of testing like static testing minimizes the
delay in identification of the problems. As we have seen in Chapter
1, the sooner a defect is identified and corrected, lesser is the cost of
fixing the defect.



50 .Software Testing

7. From a psychological point of view, finding defects later in the cycle
(for example, after the code is compiled and the system is being put
together) creates immense pressure on programmers. They have to
fix defects with less time to spare. With this kind of pressure, there
are higher chances of other defects creeping in.

There are multiple methods to achieve static testing by humans. They are (in
the increasing order of formalism) as follows.

1. Desk checking of the code
2. Code walkthrough
3. Code review
4. Code inspection

Since static testing by humans is done before the code is compiled and
executed, some of these methods can be viewed as process-oriented or
defect prevention-oriented or quality assurance-oriented activities rather
than pure testing activities. Especially as the methods become increasingly
formal (for example, Fagan Inspection), these traditionally fall under the
"process" domain. They find a place in formal process models such as
ISO 9001,CMMI, and so on and are seldom treated as part of the "testing"
domain. Nevertheless, as mentioned earlier in this book, we take a holistic
view of "testing" as anything that furthers the quality of a product. These
methods have been included in this chapter because they have visibility into
the program code.

Wewill now look into each of these methods in more detail.

3.2.1.1 Desk checking Normally done manually by the author of
the code, desk checking is a method to verify the portions of the code
for correctness. Such verification is done by comparing the code with the
design or specifications to make sure that the code does what it is supposed
to do and effectively. This is the desk checking that most programmers
do before compiling and executing the code. Whenever errors are found,
the author applies the corrections for errors on the spot. This method of
catching and correcting errors is characterized by:

1. No structured method or formalism to ensure completeness and
2. No maintaining of a log or checklist.

In effect, this method relies completely on the author's thoroughness,
diligence, and skills. There is no process or structure that guarantees or
verifies the effectiveness of desk checking. This method is effective for
correcting" obvious" coding errors but will not be effectivein detecting errors
that arise due to incorrect understanding of requirements or incomplete
requirements. This is because developers (or,more precisely, programmers
who are doing the desk checking) may not have the domain knowledge
required to understand the requirements fully.



White Box Testing

The main advantage offered by this method is that the programmer
who knows the code and the programming language very well is well
equipped to read and understand his or her own code. Also, since this
is done by one individual, there are fewer scheduling and logistics over-
heads. Furthermore, the defects are detected and corrected with minimum
time delay.

Some of the disadvantages of this method of testing are as follows.

1. A developer is not the best person to detect problems in his or her
own code. He or she may be tunnel visioned and have blind spots
to certain types of problems.

2. Developers generally prefer to write new code rather than do any
form of testing! (Wewill see more details of this syndrome later in
the section on challenges as well as when we discuss people issues
in Chapter 13.)

3. This method is essentially person-dependent and informal and
thus may not work consistently across all developers.

Owing to these disadvantages, the next two types of proactive methods are
introduced. The basic principle of walkthroughs and formal inspections is
to involve multiple people in the review process.

3.2.1.2 Codewalkthrough Thismethod and formalinspection(described
in the next section)are group-oriented methods.Walkthroughs are less formal
than inspections. The line drawn in formalism between walkthroughs
and inspections is very thin and varies from organization to organization.
The advantage that walkthrough has over desk checking is that it brings
multiple perspectives. In walkthroughs, a set of people look at the program
code and raise questions for the author. The author explains the logic of the
code, and answers the questions. If the author is unable to answer some
questions, he or she then takes those questions and finds their answers.
Completeness is limited to the area where questions are raised by the
team.

3.2.1.3 Formal inspection Code inspection-also calledFaganInspection
(namedaftertheoriginalformulator)- isamethod,normallywith ahigh degree
of formalism. The focus of this method is to detect all faults, violations,
and other side-effects. This method increases the number of defects
detected by

1. demanding thorough preparation before an inspection/review;
2. enlisting multiple diverse views;
3. assigning specific roles to the multiple participants; and
4. going sequentially through the code in a structured manner.

A formal inspection should take place only when the author has made sure
the code is ready for inspection by performing some basic desk checking
and walkthroughs. When the code is in such a reasonable state of readiness,



52 Software Testing

an inspection meeting is arranged. There are four roles in inspection. First
is the author of the code. Second is a moderator who is expected to formally
run the inspection according to the process. Third are the inspectors. These
are the people who actually provides, review comments for the code. There
are typically multiple inspectors. Finally, there is a scribe, who takes detailed
notes during the inspection meeting and circulates them to the inspection
team after the meeting.

The author or the moderator selects the review team. The chosen
members have the skill sets to uncover as many defects as possible. In an
introductory meeting, the inspectors get copies (These can be hard copies
or soft copies) of the code to be inspected along with other supporting
documents such as the design document, requirements document, and any
documentation of applicable standards. The author also presents his or her
perspective of what the program is intended to do along with any specific
issues that he or she may want the inspection team to put extra focus on. The
moderator informs the team about the date, time, and venue of the inspection
meeting. The inspectors get adequate time to go through the documents
and program and ascertain their compliance to the requirements, design,
and standards.

The inspection team assembles at the agreed time for the inspection
meeting (also called the defect logging meeting). The moderator takes the team
sequentially through the program code, asking each inspector if there are
any defects in that part of the code. If any of the inspectors raises a defect,
then the inspection team deliberates on the defect and, when agreed that
there is a defect, classifiesit in two dimensions-minor/major and systemic/mis-
execution. Amis-execution defect is one which, as the name suggests, happens
because of an error or slip on the part of the author. It is unlikely to be
repeated later, either in this work product or in other work products. An
example of this is using a wrong variable in a statement. Systemic defects,
on the other hand, can require correction at a different level. For example,
an error such as using some machine-specific idiosyncrasies may have to
removed by changing the coding standards. Similarly, minor defects are
defects that may not substantially affect a program, whereas major defects
need immediate attention.

A scribe formally documents the defects found in the inspection meeting
and the author takes care of fixing these defects. In case the defects are
severe, the team may optionally call for a review meeting to inspect the fixes
to ensure that they address the problems. In any case, defects found through
inspection need to be tracked till completion and someone in the team has to
verify that the problems have been fixed properly.

3.2.1.4 Combining various methods The methods discussed above
are not mutually exclusive. They need to be used in a judicious combination
to be effective in achieving the goal of finding defects early.



White Box Testini 53

Formal inspections have been found very effective in catching defects
early. Some of the challenges to watch out for in conducting formal
inspections are as follows.

1. These are time consuming. Since the process calls for preparation
as well as formal meetings, these can take time.

2. The logistics and scheduling can become an issue since multiple
people are involved.

3. It is not always possible to go through every line of code, with
several parameters and their combinations in mind to ensure the
correctness of the logic, side-effects and appropriate error handling.
It may also not be necessary to subject the entire code to formal
inspection.

In order to overcome the above challenges, it is necessary to identify,
during the planning stages, which parts of the code will be subject to formal
inspections. Portions of code can be classified on the basis of their criticality
or complexity as "high," "medium," and "low." High or medium complex
critical code should be subject to formal inspections, while those classified
as "low" can be subject to either walkthroughs or even desk checking.

Desk checking, walkthrough, review and inspection are not only used
for code but can be used for all other deliverables in the project life cycle
such as documents, binaries, and media.

3.2.2 Static Analysis Tools

The review and inspection mechanisms described above involve significant
amount of manual work. There are several static analysis tools available in
the market that can reduce the manual work and perform analysis of the
code to find out errors such as those listed below.

1. whether there are unreachable codes (usage of GOTO statements
sometimes creates this situation; there could be other reasons too)

2. variables declared but not used
3. mismatch in definition and assignment of values to variables
4. illegal or error prone typecasting of variables
5. use of non-portable or architecture-dependent programming

constructs
6. memory allocated but not having corresponding statements for

freeing them up memory
7. calculation of cyclomatic complexity (covered in the Section 3.3)

These static analysis tools can also be considered as an extension of compilers
as they use the same concepts and implementation to locate errors. A good
compiler is also a static analysis tool. For example, most C compilers provide
different "levels" of code checking which will catch the various types of
programming errors given above.



54 Software Testing

Some of the static analysis tools can also check compliance for coding
standards as prescribed by standards such as POSIX. These tools can also
check for consistency in coding guidelines (for example, naming conventions,
allowed data types, permissible programming constructs, and so on).

While following any of the methods of human checking-desk checking,
walkthroughs, or formal inspections-it is useful to have a code review
checklist. Given below is checklist that covers some of the common issues.
Every organization should develop its own code review checklist. The
checklist should be kept current with new learning as they come about.

In a multi-product organization, the checklist may be at two levels-first,
an organization-wide checklist that will include issues such as organizational
coding standards, documentation standards, and so on; second, a product-
or project-specific checklist that addresses issues specific to the product
or project.

CODE REVIEW CHECKLIST





56 Software Testing

3.3 STRUCTURALTESTING

Structural testing takes into account the code, code structure, internal
design, and how they are coded. The fundamental difference between
structural testing and static testing is that in structural testing tests are
actually run by the computer on the built product, whereas in static testing,
the product is tested by humans using just the source code and not the
executables or binaries.

Structural testing entails running the actual product against some pre-
designed test cases to exercise as much of the code as possible or necessary.
A given portion of the code is exercised if a test case causes the program to
execute that portion of the code when running the test.

As discussed at the beginning of this chapter, structural testing can be
further classified into unit/code functional testing, code coverage, and code
complexity testing.

3.3.1 Unit/Code Functional Testing
This initial part of structural testing corresponds to some quick checks that
a developer performs before subjecting the code to more extensive code
coverage testing or code complexity testing. This can happen by several
methods.

1. Initially, the developer can perform certain obvious tests, knowing
the input variables and the corresponding expected output
variables. This can be a quick test that checks out any obvious
mistakes. By repeating these tests for multiple values of input
variables, the confidence level of the developer to go to the next level



_1~£, .. ~~-h. k
:!jfr:1W!t"f\W J4,o$ <i, *0/.~,. ~<.-,:,:,:,:,:,. ,.' ,..... .'. " ;~.-';.;h~

White Box Testing 57

increases. This can even be done prior to formal reviews of static
testing so that the review mechanism does not waste time catching
obvious errors.

2. For modules with complex logic or conditions, the developer can
build a /I debug version" of the product by putting intermediate print
statements and making sure the program is passing through the
right loops and iterations the right number of times. It is important
to remove the intermediate print statements after the defects
are fixed.

3. Another approach to do the initial test is to run the product under a
debugger or an Integrated Development Environment (IDE).These
tools allow single stepping of instructions (allowing the developer
to stop at the end of each instruction, view or modify the contents
of variables, and so on), setting break points at any function or
instruction, and viewing the various system parameters or program
variable values.

All the above fall more under the "debugging" category of activities than
under the "testing" category of activities. All the same, these are intimately
related to the knowledge of code structure and hence we have included
these under the "white box testing" head. This is consistent with our view
that testing encompasses whatever it takes to detect and correct defects in
a product.

3.3.2 Code Coverage Testing
Since a product is realized in terms of program code, if we can run test
cases to exercise the different parts of the code, then that part of the product
realized by the code gets tested. Code coverage testing involves designing
and executing test cases and finding out the percentage of code that is
covered by testing. The percentage of code covered by a test is found by
adopting a technique called instrumentation of code. There are specialized
tools available to achieve instrumentation. Instrumentation rebuilds the
product, linking the product with a set of libraries provided by the tool
vendors. This instrumented code can monitor and keep an audit of what
portions of code are covered. The tools also allow reporting on the portions
of the code that are covered frequently, so that the critical or most-often
portions of code can be identified.

Code coverage testing is made up of the following types of coverage.

1. Statement coverage
2. Path coverage
3. Condition coverage
4. Function coverage



..~i~::;;):I~;Ii:~
3.3.2.1 Statement coverage Program constructs in most conven-
tional programming languages can be classified as

1. Sequential control flow
2. Two-way decision statements like if then else
3. Multi-way decision statements like Switch
4. Loops like while do, repeat until and for

Object-oriented languages have all of the above and, in addition, a
number of other constructs and concepts. We will take up issues pertaining
to object oriented languages together in Chapter 11. We will confine our
discussions here to conventional languages.

Statement coverage refers to writing test cases that execute each of the
program statements. One can start with the assumption that more the code
covered, the better is the testing of the functionality, as the code realizes the
functionality. Based on this assumption, code coverage can be achieved by
providing coverage to each of the above types of statements.

For a section of code that consists of statements that are sequentially
executed (that is, with no conditional branches), test cases can be designed
to run through from top to bottom. A test case that starts at the top would
generally have to go through the full section till the bottom of the section.
However, this may not always be true. First, if there are asynchronous
exceptions that the code encounters (for example, a divide by zero), then,
even if we start a test case at the beginning of a section, the test case may not
cover all the statements in that section. Thus, even in the case of sequential
statements, coverage for all statements may not be achieved. Second, a
section of code may be entered from multiple points. Even though this
points to not following structured programming guidelines, it is a common
scenario in some of the earlier programming languages.

When we consider a two-way decision construct like the if statement,
then to cover all the statements, we should also cover the then and else
parts of the if statement. This means we should have, for each if then
else, (at least) one test case to test the Thenpart and (at least) one test case
to test the e1s e part.

The multi-way decision construct such as a Switch statement can be
reduced to multiple two-way if statements. Thus, to cover all possible
switch cases, there would be multiple test cases. (Weleave it as an exercise
for the reader to develop this further.)

Loop constructs present more variations to take care of. A loop-in
various forms such as for, while, repeat, and so on-is characterized
by executing a set of statements repeatedly until or while certain conditions
are met. A good percentage of the defects in programs come about because
of loops that do not function properly. More often, loops fail in what are
called "boundary conditions." One of the common looping errors is that the
termination condition of the loop is not properly stated. In order to make



,'~ite Box '{estin$

sure that there is better statement coverage for statements within a loop,
there should be test cases that

1. Skip the loop completely, so that the situation of the termination
condition being true before starting the loop is tested.

2. Exercise the loop between once and the maximum number of times,
to check all possible "normal" operations of the loop.

3. Try covering the loop, around the "boundary" of n-that is, just
below n, n, and just above n.

The statement coverage for a program, which is an indication of the
percentage of statements actually executed in a set of tests, can be calculated
by the formula given alongside in the margin.

It is clear from the above discussion that as the type of statement
progresses from a simple sequential statement to if then else and
through to loops, the number of test cases required to achieve statement
coverage increases.Takinga cue from the Dijkstra'sDoctrine in Chapter I, just
as exhaustive testing of all possible input data on a program is not possible, so
also exhaustive coverageof all statements in a program will also be impossible
for all practicalpurposes.

Even ifwe were to achieve a very high level of statement coverage, it does
not mean that the program is defect-free. First, consider a hypothetical case
when we achieved 100 percent code coverage. If the program implements
wrong requirements and this wrongly implemented code is "fully tested,"
with 100 percent code coverage, it still is a wrong program and hence the
100percent code coverage does not mean anything.

Next, consider the following program.

Total = Oi /* set total to zero */
if (code == "M") {

stmtli
stmt2i
Stmt3i
stmt4i
Stmt5i
stmt6i
Stmt7i

else percent = value/Total*ldOi /* divide by zero */

In the above program, when we test with code = "M," we will get
80 percent code coverage. But if the data distribution in the real world is
such that 90 percent of the time, the value of code is not = "M," then, the
program will fail 90 percent of the time (because of the divide by zero in
the highlighted line). Thus, even with a code coverage of 80percent, we are
left with a defect that hits the users 90 percent of the time. Path coverage,
discussed in Section 3.3.2.2,overcomes this problem.



60 Software Testing

3.3.2.2 Path coverage In path coverage,we split a program into a number
of distinct paths. A program (or a part of a program) can start from the be-
ginning and take any of the paths to its completion.

Let us take an example of a date validation routine. The date is accepted
as three fields rom, dd and yyyy.Wehave assumed that prior to entering this
routine, the values are checked to be numeric. To simplify the discussion, we
have assumed the existence of a function called leapyear which will return
TRUEif the given year is a leap year. There is an array called DayofMonth
which contains the number of days in each month. A simplified flow chart
for this is given in Figure 3.2 below.

As can be seen from the figure, there are different paths that can be taken
through the program. Each part of the path is shown in red. The coloured
representation of Figure 3.2 is available on page 459. Some of the paths are

>I< A
>I< B-D-G
>I< B-D-H
>I< B-C-E-G
>I< B-C-E-H
>I< B-C-F-G
>I< B-C-F-H

Regardless of the number of statements in each of these paths, if we
can execute these paths, then we would have covered most of the typical
scenarios.

False

'1J

'J I False

(j
True

511 True

Figure 3.2
Flowchart fora date
validationroutine.


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078

